水下拖体姿态角自适应控制器设计

井安言, 裴武波

(中国船舶重工集团有限公司 第七一〇研究所,湖北 宜昌 443003)

摘 要 水下拖曳系统在工作过程中拖体的俯仰角控制一直是水下拖体姿态控制的重要环节,设计了一种基于 RBF 神经网络的水下拖体直接自适应控制器,在闭环系统中利用 RBF 神经网络的局部无限逼近非线性 函数的特性。将 RBF 神经网络的输出代替水下拖体动力学模型中的非线性不确定项,配合传统的 PD 控制器, 无需预先离线学习,在线学习更新神经网络权值,控制律和神经网络权值更新律经 Lyapunov 定理证明为稳定, 跟踪误差收敛到 0,通过计算机仿真比较该控制器与传统 PD 控制器的控制效果。

关键词 控制科学与技术;水下拖曳系统; RBF 神经网络; 自适应控制;

中图分类号 TP273⁺.2 文献标识码 A

Design of Adaptive Controller for Attitude Angle of Underwater Towed Vehicle

JING Anyan, PEI Wubo

(1. No. 710 R&D Institute, CSIC, Yichang 443003, China)

Abstract The pitch angle control of the underwater towed vehicle during its working process has always been an important part of underwater towing system attitude control. In this paper, a direct adaptive controller for underwater towed vehicles based on RBF neural network is designed, using the characteristic of local infinite approximation to nonlinear functions of RBF neural network in closed-loop system. With the cooperation with the traditional PD controller, the output of RBF neural network replaces the nonlinear uncertainties in the dynamics model of underwater towed vehicle. No prior off-line learning phase, the adaptive controller learns to update neural network weights on-line. Control law and neural network weight update law are proved stable by using Lyapunov theory, and the tracking error converges to 0.This paper compares the performance of the controller with the traditional PD controller through computer simulation.

Key words control science and technology; underwater towed system; RBF neural network; adaptive control

0 引言

相比于陆地,海洋对人类来说要陌生许多,受 制于种种因素,人类对于海洋知之甚少。近年来, 水下探测设备的发展受到了广泛关注,水下拖曳系 统就是其中之一。水下拖曳系统由母船,拖缆和拖 体组成,母船与拖体通过拖缆相连,母船可以是水 面船舶或半潜式航行体等常规动力航行器。在水下 拖曳系统的控制技术研究中,水下拖体的姿态角控制一直是阻碍其技术发展的瓶颈问题。

当前水下拖体姿态角控制的难点在于:1)水 下洋流不稳定,导致拖体受到不规则扰动;2)母 船受海面波浪的影响通过拖缆传递到拖体上,导致 拖曳力处于不规则时变状态,干扰拖体的水下姿 态;3)拖缆受不规则洋流影响,传递到拖体上导

收稿日期: 2019-3-27

作者简介: 井安言(1995-), 男, 硕士生, 主要从事水下特种装备探测与控制研究。

致拖体的工作姿态受到干扰。针对以上难点,国内 外学者进行了大量研究,并取得了一些成果^[1-10]。 加拿大的 Buckham B^[1]小组在 2003 年针对带拖体 的半潜式航行器整体采用集总质量估计方法进行 建模并设计了 PID 控制器进行控制。日本的 Asuma Minowa 和 Masayoshi Toda^[2]在 2015 年进行了关于 水下拖曳航行器(TUV)鲁棒控制的预研课题,提 出了一种基于高增益观测器的 TUV 鲁棒运动控制 器。之后 Asuma Minowa 和 Masayoshi Toda^[3]在 2018 年根据前期预研,针对高阶系统进行进一步 研究,提出了一种基于 LQI (linear-quadraticintegral)的控制器。此外,还有日本的 Naomi Kato 等人[4-5]研究了关于水下拖曳航行器的模糊控制器 设计,在垂直方向和水平方向耦合模型下提出了一 种模糊控制规则。葡萄牙的 F.C.Teixeira 等人^[6-7] 分别在 2006 年、2010 年设计了一种非线性自适应 控制器并且通过仿真展示该控制器运用在二体拖 曳模型上的优异性能。Woolsey 和 Gargett^[8]提出通 过人为改变拖体的重心位置,改变其定深翼板的攻 角,来达到控制拖体定深的目的。上海交通大学的 王飞^[9]提出了一种嵌套二分法求解水下拖曳系统模 型的数值解,并设计了一种模糊 PID 控制器解决拖 缆的定深问题,计算机仿真显示了其良好的性能。

本文将根据 Masayoshi Toda^[10]提出的水下拖 曳系统的动力学模型,设计一种神经网络自适应控 制器,通过神经网络在线学习逼近模型中的非线性 不确定项,起到补偿不规则干扰以及保护模型非线 性特性的作用,通过计算机仿真验证该控制器对于 水下拖体俯仰角控制的有效性。

1 水下拖曳系统运动建模

1.1 坐标系表示

为了研究方便,也因为拖体在垂直面上的运动 控制是最重要的,所以只考虑拖体在垂直面上的运 动。除了将模型的运动限制在二维垂直面上以外, 还有如下假设:1)母船以恒定速度v₀作匀速直线 运动;2)忽略关于母船的动力学问题;3)环境干 扰不作考虑(包括洋流与波浪);4)拖缆视为一个 刚性单元,其质量集中于末点;5)所有作用于拖 缆单元的力均视为作用于其质点;6)拖体的深度 与姿态角可测。

坐标系 $O_0X_0Z_0$ 的原点 O_0 在拖缆与母船的连接点上,坐标系 $O_1X_1Z_1$ 的原点 O_1 在拖缆与拖体的连接点上,且 O_1 为拖缆的质心,坐标系 $O_2X_2Z_2$ 的原点 O_2 在拖体的中心, q_1 表示拖缆与水平面的夹角, q_2 表示拖体的攻角,规定逆时针方向为所有角度的正方向。

坐标表示如图1所示。

图 1 模型的坐标表示 Fig. 1 Coordinate representation of model

1.2 水下拖曳系统动力学模型

使用集总质量估计法建模如下:

$$\boldsymbol{E}(\boldsymbol{q})\boldsymbol{\ddot{q}} + \boldsymbol{F}(\boldsymbol{q},\boldsymbol{\dot{q}}) = \boldsymbol{\tau}_{bg}(\boldsymbol{q}) + \boldsymbol{\tau}$$
(1)

式中, $q = [q_1, q_2]^T$ 表示状态向量, $E(q) \in \mathbb{R}^{2\times 2}$, $F\left(q, q\right) \in \mathbb{R}^{2\times 1}$, $\tau_{bg}(q) \in \mathbb{R}^{2\times 1}$ 和 $\tau \in \mathbb{R}^{2\times 1}$ 分别表示惯 性矩阵项,科里奥利和向心力向量项,浮力和重力 项,控制输入项。

水下拖曳系统模型有以下2个特性:

$$\ddot{\boldsymbol{q}} = \boldsymbol{f}(\cdot) + \boldsymbol{E}^{-1}\boldsymbol{\tau} \tag{2}$$

式中 $f(\cdot) = E^{-1}(\tau_{bg} - F)$ 。假设给定一个目标状态

如果 **f**(·) 和 **E**⁻¹精确已知, 那么 PD 控制律可 以设计为

$$\boldsymbol{\tau} = \boldsymbol{E}^{-1} \left(-\boldsymbol{f}\left(\cdot\right) + \ddot{\boldsymbol{q}} + \boldsymbol{k}_{p}\boldsymbol{e} + \boldsymbol{k}_{d} \, \dot{\boldsymbol{e}} - \boldsymbol{\beta}\left(t\right) \right)$$
(3)

式中: k_p 、 k_d 分别为位置和速度增益矩阵; $\beta(t)$ 是 关于目标攻角跟踪误差的辅助输入, 定义

 $e = q_d - q$, $e = q_d - q$ 。当辅助输入为 0 时,将控制律式(3)应用于式(2),可得系统的跟踪误差渐进稳定。但是实际工程应用中 $f(\cdot)$ 和 E^{-1} 不可能精确已知,所以需要其他的控制方法与控制算法。

2 神经网络自适应控制器设计

2.1 问题的提出

设跟踪误差为

$$e(t) = q_d(t) - q(t)$$
 (4)
定义跟踪误差函数为

$$\boldsymbol{r} = \boldsymbol{e} + \boldsymbol{\Lambda} \boldsymbol{e} \tag{5}$$

式中, $\Lambda \in \mathbb{R}^{2\times 2}$, $\Lambda = \Lambda^{T} > 0$,故当跟踪误差函数r最终一致有界时,跟踪误差e(t)一定有界。

将跟踪误差函数对时间的导数r代入式(1), 将水下拖曳系统动力学方程写作关于跟踪误差函 数的表达式,如下:

$$\vec{E} \, \vec{r} = E \left(\ddot{\vec{q}}_d - \ddot{\vec{q}} + \Lambda \dot{\vec{e}} \right) = E \left(\ddot{\vec{q}}_d + \Lambda \dot{\vec{e}} \right) - E \ddot{\vec{q}} = E \left(\ddot{\vec{q}}_d + \Lambda \dot{\vec{e}} \right) + F - \tau_{bg} - \tau = f - \tau \quad (6)$$

式中, $f = E\left(\ddot{q}_{d} + \Lambda e\right) + F - \tau_{bg}$, 该项即为模型不 精确已知项, 也可称为不确定项, 利用 RBF 神经 网络理论上可以无限逼近任何非线性函数的特性 逼近该函数, RBF 神经网络的输入取

$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{\cdot}^{\mathrm{T}} & \boldsymbol{\cdot}^{\mathrm{T}} & \boldsymbol{\cdot}^{\mathrm{T}} & \boldsymbol{\cdot}^{\mathrm{T}} \\ \boldsymbol{e} & \boldsymbol{x}_{d} & \boldsymbol{x}_{d} & \boldsymbol{x}_{d} \end{bmatrix}$$
(7)

定义控制律为

$$\boldsymbol{\tau} = \hat{\boldsymbol{f}} + \boldsymbol{K}_{\mathbf{v}}\boldsymbol{r} \tag{8}$$

式中, \hat{f} 为 RBF 神经网络逼近 f 函数的输出值, 且增益矩阵 $K_{\nu} = K_{\nu}^{T} > 0$ 。将控制率式(8)代入式(6),闭环系统变为

$$\vec{Er} = f - \hat{f} - K_v r = -K_v r + \tilde{f}$$
(9)

式中, f 为神经网络逼近的误差, $f = f - \hat{f}$ 。

至此已经搭建了一个完整的误差系统,式中跟 踪误差函数受到函数逼近误差的影响。控制输入 τ 包含一个比例–微分(PD)项 $K_v r = K_v \left(\frac{i}{e} + \Lambda e \right)$ 。 利用 Lyapunov 定理分析系统稳定性,定义 Lyapunov 函数为

$$L = \frac{1}{2} \mathbf{r}^{\mathrm{T}} \mathbf{E} \mathbf{r} + \frac{1}{2} \tilde{\mathbf{f}}^{2}$$
(10)
对 L 求一阶导,得

 $\dot{L} = \mathbf{r}^{\mathrm{T}} \mathbf{E} \, \dot{\mathbf{r}} + \frac{1}{2} \mathbf{r}^{\mathrm{T}} \, \dot{\mathbf{E}} \, \mathbf{r} + \tilde{\mathbf{f}} \, \tilde{\mathbf{f}} = -\mathbf{r}^{\mathrm{T}} \mathbf{K}_{v} \mathbf{r} + \frac{1}{2} \mathbf{r}^{\mathrm{T}} \, \dot{\mathbf{E}} \, \mathbf{r} + \mathbf{r}^{\mathrm{T}} \, \tilde{\mathbf{f}} + \tilde{\mathbf{f}} \, \tilde{\mathbf{f}} \qquad (11)$

根据水下拖曳系统模型的特性可知, *E*为斜 对称矩阵,即对任意向量*s*,有*s*^T*Es*=0,化简 式(11)得

$$\dot{L} = -\boldsymbol{r}^{\mathrm{T}}\boldsymbol{K}_{\mathrm{v}}\boldsymbol{r} + \boldsymbol{r}^{\mathrm{T}}\tilde{\boldsymbol{f}} + \tilde{\boldsymbol{f}}\tilde{\boldsymbol{f}} \qquad (12)$$

由式(12)分析可知,当*K*,固定的情况下, 控制系统的稳定性取决于神经网络逼近函数*f* 的精度。

2.2 针对函数 f(x) 逼近的控制

2.2.1 控制器的设计

本文选择径向基函数(RBF)神经网络作为对 函数 **f**(**x**)进行逼近的神经网络。径向基函数神经 网络是一个只有 2 层的网络,在网络的中间层,即 隐藏层,它以对局部相应的径向基函数代替传统的 全局响应的激发函数。经理论证明,径向基函数神 经网络可以以任意精度局部逼近任意函数,而且训 练过程极短。由于径向基函数神经网络在函数逼近 方面有着明显的优势,故选取其作为对函数 *f*(*x*) 进行逼近的神经网络。

理想的 RBF 网络算法为

$$\phi_i = g\left(\frac{\|\boldsymbol{x} - \boldsymbol{c}_i\|^2}{\boldsymbol{b}_i^2}\right), i = 1, 2, \cdots, n$$
 (13)

$$y = W^{*T} \varphi(\mathbf{x}), f(\mathbf{x}) = W^{*} \varphi(\mathbf{x}) + \varepsilon$$
 (14)

式中: x 为网络的输入信号; $\varphi = [\phi \quad \phi_2 \quad \cdots \quad \phi_n]^T$; ε 为神经网络逼近误差; W^* 为理想 RBF 网络的权值。

实际情况下,设 RBF 神经网络的输出为

$$\hat{f}(x) = \hat{W}^{\mathrm{T}} \varphi(x) \qquad (15)$$

取W为理想权值与实际权值的差,即

$$\tilde{\boldsymbol{W}} = \boldsymbol{W}^* - \hat{\boldsymbol{W}}, \left\| \boldsymbol{W}^* \right\|_{\mathrm{F}} \ll \boldsymbol{W}_{\mathrm{max}}$$
(16)

设计控制律为

$$\boldsymbol{\tau} = \hat{\boldsymbol{f}}(\boldsymbol{x}) + \boldsymbol{K}_{\boldsymbol{v}}\boldsymbol{r} - \boldsymbol{v} \qquad (17)$$

式中v是鲁棒项,用于克服神经网络逼近误差 *ε*。 将控制律式(17)代入式(6),得

$$\vec{E r} = -K_{\nu}r + \tilde{W}^{T}\varphi(x) + \varepsilon + \nu = -K_{\nu}r + \delta_{I} \quad (18)$$

式中, $\delta_1 = W \quad \varphi(x) + \varepsilon + v_{\circ}$

将鲁棒项设计为

$$\boldsymbol{v} = -(\boldsymbol{\varepsilon}_N + \boldsymbol{b}_d)\operatorname{sign}(\boldsymbol{r}) \tag{19}$$

式中, $\|\boldsymbol{\varepsilon}\| \leq \varepsilon_N, \|\boldsymbol{\tau}_d\| \leq b_d$ 。

2.2.2 权值更新律的设计

设计的权值更新律必须满足使闭环系统跟 踪误差稳定的要求,而且在跟踪输入误差 r 足够 小的情况下,权值更新律 ŵ 必须为可证有界的。 本文设想采用在线更新权值的方法,不需要额外 离线更新权值的步骤,可以保证控制器具有更佳 的实时性以及自适应性。另外,设定权值初始化 为 0,因为控制器具有一个跟踪环可以保证跟踪 误差是有界的,从而神经网络可以开始学习,即 权值更新。 假设水下拖体目标状态 q_d , q_d , q_d 有界且不大 于 q_B ,不存在未知扰动以及逼近误差,将式(17) 作为式(1)的控制输入,那么权值更新律可以 取为

$$\hat{\boldsymbol{W}} = \boldsymbol{F}_{\boldsymbol{w}} \boldsymbol{\varphi} \boldsymbol{r}^{\mathrm{T}}$$
 (20)

式中 $F_w = F_w^T > 0$,为正定常数阵。 2.2.3 稳定性分析

利用 Lyapunov 定理分析稳定性,定义 Lyapunov 函数为

$$L = \frac{1}{2} \boldsymbol{r}^{\mathrm{T}} \boldsymbol{E} \boldsymbol{r} + \frac{1}{2} tr \left(\tilde{\boldsymbol{W}}^{\mathrm{T}} \boldsymbol{F}_{\boldsymbol{w}}^{-1} \tilde{\boldsymbol{W}} \right)$$
(21)

式中, $E 和 F_w$ 均为正定阵。对L 求 -阶导, 有

$$\dot{L} = \mathbf{r}^{\mathrm{T}} \mathbf{E} \, \dot{\mathbf{r}} + \frac{1}{2} \mathbf{r}^{\mathrm{T}} \, \dot{\mathbf{E}} \, \mathbf{r} + tr \left(\tilde{\mathbf{W}}^{\mathrm{T}} \, \mathbf{F}_{w}^{-1} \, \tilde{\mathbf{W}} \right) \qquad (22)$$

$$\dot{\boldsymbol{L}} = -\boldsymbol{r}^{\mathrm{T}}\boldsymbol{K}_{\mathrm{v}}\boldsymbol{r} + \frac{1}{2}\boldsymbol{r}^{\mathrm{T}}\dot{\boldsymbol{E}}\boldsymbol{r} + \operatorname{tr}\tilde{\boldsymbol{W}}^{\mathrm{T}}\left(\boldsymbol{F}_{\mathrm{w}}^{-1}\boldsymbol{\tilde{\boldsymbol{W}}} + \boldsymbol{\varphi}\boldsymbol{r}^{\mathrm{T}}\right) + \boldsymbol{r}^{\mathrm{T}}\left(\boldsymbol{\varepsilon} + \boldsymbol{v}\right)$$
(23)

同上有 $\mathbf{r}^{\mathrm{T}} \mathbf{E} \mathbf{r} = 0$, 且权值更新律为

$$\hat{W} = F_{w} \varphi r^{\mathrm{T}}, \ \ell$$
简式 (23) 得
$$\hat{L} = -r^{\mathrm{T}} K_{v} r + r^{\mathrm{T}} (\varepsilon + v)$$
(24)

由于

$$\dot{\boldsymbol{L}} = -\boldsymbol{r}^{\mathrm{T}}\boldsymbol{K}_{\boldsymbol{v}}\boldsymbol{r} + \boldsymbol{r}^{\mathrm{T}}(\boldsymbol{\varepsilon} + \boldsymbol{v}) \leq 0 \qquad (26)$$

由于当且仅当r=0时, L=0, 即当L=0时, r=0。根据 LaSalle 不变性原理, 闭环系统为渐进 稳定, 即当 $t \rightarrow \infty$ 时, $r \rightarrow 0$, 系统的收敛速度取 决于 K_v 。

$$\mathbf{X}$$

$$\dot{L} = -\mathbf{r}^{\mathrm{T}} \mathbf{K}_{\mathbf{v}} \mathbf{r} + \mathbf{r}^{\mathrm{T}} (\mathbf{\varepsilon} + \mathbf{v}) \leq \mathbf{K}_{\mathbf{v}\min} \|\mathbf{r}\|^{2} + (\varepsilon_{N} + b_{d}) \|\mathbf{r}\|$$
(27)

式中 K_{vmin} 是 K_v 的最小奇异值。因为 $\varepsilon_N + b_d$ 是常数, 只要

$$\|\boldsymbol{r}\| > (\varepsilon_N + b_d) / \boldsymbol{K}_{v\min}$$
 (28)

可得 $L \leq 0$ 。

综上所述,当神经网络的隐藏层有持续输出 φ ,且跟踪误差函数r是最终一致稳定并满足式 (25),那么神经网络实际权值 \hat{W} 一定有界。

3 水下拖体姿态角控制仿真

假设某水下拖曳系统以恒定的速度直线运动, 拖体为鱼雷型,式中部和尾部分别有定深翼板和控 制翼板,拖体总长度为 2 400 mm,拖体直径为 300 mm,重量为 254 kg,拖缆直径为 10.5 mm,单 位缆长水中重量为 0.07 kg/m。首先在 3 级海况下 对水下拖曳系统的控制情况进行仿真分析,控制输 入为 $\left[q_{d}^{T}(t) \stackrel{, T}{q_{d}}(t) \stackrel{, T}{q_{d}}(t)\right]$ 均为有界,控制输出 为 $\left[\tau \quad \hat{f}(x)\right]$,将目标角 $q_{d}(t)$ 设定为 $\left[\frac{\pi}{4} \quad 0\right]$,分 别使用神经网络自适应控制器和传统 PD 控制器对 拖缆和拖体进行控制,PD 控制器的控制效果如图 2 和图 3 所示,神经网络自适应控制器的控制效果

图 2 3级海况下 PD 控制器拖缆目标角跟踪 Fig. 2 Cable target angle tracking of PD controller at 3-level sea state

图 3 3级海况下 PD 控制器拖体的目标角跟踪 Fig. 3 Towed vehicle target angle tracking of PD

图 4 3级海况下自适应控制器拖缆目标角跟踪 Fig. 4 Cable target angle tracking of adaptive

controller at 3-level sea state

由上述仿真结果分析可知: PD 控制器在 4 级海 况下的控制效果劣于神经网络自适应控制器。对于 拖缆,神经网络自适应控制器和 PD 控制器的调节 时间分别为2s和8s,稳态误差均趋于0。对于拖体,神经网络自适应控制器和 PD 控制器的调节时间分别为2.5s和5s,稳态误差均趋于0。在实际情况下,水下拖曳系统可能会受到较为剧烈的海况影响,为了比较2种控制器在受到强烈干扰时的鲁棒性,将4级海况作为干扰输入,得到如下仿真图像:传统 PD 控制器的控制效果如图6和图7所示,神经网络自适应控制器的控制效果如图8和图9所示,神经网络逼近目标函数的情况如图10所示。

图 6 4 级海况下 PD 控制器拖缆目标角跟踪 Fig. 6 Cable target angle tracking of PD controller at 4-level sea state

图 7 4级海况下 PD 控制器拖体的目标角跟踪 Fig. 7 Towed vehicle target angle tracking of PD controller at 4-level sea state

在 5 级海况下,由于 PD 控制器的参数无法实现自整定,所以当外界环境干扰产生较大变化时, PD 控制器明显无法达到控制效果,实际角会在目标角的附近反复震荡,稳态误差较大,说明 PD 控制器无法起到抑制误差与扰动的作用,鲁棒性很

图 8 4 级海况下自适应控制器拖缆目标角跟踪 Fig. 8 Cable target angle tracking of adaptive controller at 4-level sea state

图 9 4 级海况下自适应控制器拖体的目标角跟踪

Fig. 9 Towed vehicle target angle tracking of adaptive controller at 4-level sea state

差。神经网络自适应控制器通过在线学习,神经网络的输出可以较好地逼近模型中的非线性不确定函数项,很好地补偿了误差与扰动,在控制器参数选择合适的情况下,拖缆和拖体的角度完全可控,调节时间很短,稳态误差不大,可以达到控制目标。本文设计的神经网络自适应控制器可以看作是由RBF神经网络和PD控制器组成,工程上PD控制器是应用非常广泛的控制器,有着系统响应快,误差调整速度快的优点,但是遇到存在干扰的复杂环境时,PD控制器鲁棒性差的短板就显露出来,而RBF神经网络的存在很大程度上弥补了PD控制器鲁棒性差的劣势。

4 结束语

· 86 ·

本文基于 RBF 神经网络算法,并结合传统 PD 控制器,提出了一种神经网络自适应控制器,该控 制器在水下拖曳系统的垂直面二维运动控制中取得 了良好的效果,该神经网络自适应控制器不需要繁 琐的离线控制,也不需要其他线性控制器将非线性 模型线性化的步骤,极大地保护了非线性模型自身 的非线性特性。仿真实验表明,该控制器可以完成 拖缆角度与拖体俯仰角的控制,并且在存在误差与 干扰的情况下控制效果远优于 PD 控制器。如果将该 控制器工程化,算法通过硬件加速后控制效果可能更 好。本文的研究对于水下拖曳控制系统的设计来说有 参考价值,目前仅仅是完成了垂直面上的二维运动仿 真,对于更加复杂的三维运动控制问题,以及模型中 n>2的情况,将是下一阶段的主要研究方向。

参考文献

[1] BUCKHAM B, NAHON M, SETO M, et al. Dynamics and control of a towed underwater vehicle system, part I: model development[J]. Ocean Engineering, 2003, 30 (4): 453-470.

- [2] MINOWA A, TODA M. Motion control of towed underwater vehicles with movable wings using a high-gain observer based approach[C]// 2015 IEEE 10th Conference on. IEEE.US; IEEE, 2015; 1893-1898.
- [3] MINOWA A, TODA M. A high gain observer based approach to robust motion control of towed underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2018 (99): 1-14.
- [4] KATO N. Underwater towed vehicle maneuverable in both vertical and horizontal axis[J]. Journal of the Society of Naval Architects of Japan, 1991 (169): 111-122.
- [5] KATO N. Guidance and control of underwater towed vehicle maneuverable in both vertical and horizontal axis[C]//, Proc. Second Int. Offshore Polar Eng. Conf. US: ISOPE, 1992.
- [6] TEIXEIRA F C, AGUIAR A P, PASCOAL A M. Nonlinear control of an underwater towed vehicle[C]// 7th IFAC Conference on Manoeuvring and Control of Marine Craft. Lisbon:IFAC, 2006.
- [7] TEIXEIRA F C, AGUIAR A P, PASCOAL A M. Nonlinear adaptive control of an underwater towed vehicle[J]. Ocean Engineering, 2010, 37 (13): 1193-1220.
- [8] WOOLSEY C A, GARGETT A E. Passive and active attitude stabilization for a tow-fish[C]//41st IEEE Conference on Decision and Control.Las Vegas: IEEE, 2002.
- [9] 王飞. 海洋勘探拖曳系统运动仿真与控制技术研究 [D]. 上海: 上海交通大学, 2006.
- [10] TODA M. A theoretic analysis of a control system structure of towed underwater vehicles[C]// Decision and Control 2005 and 2005 European Control Conference,44th IEEE Conference on. IEEE. US: IEEE, 2005.

(责任编辑:张曼莉)