1990年10月20景泰地震的

活动图象及其特征

阎志德 王周元

(国家地震局兰州地震研究所)

摘要

本文研究了甘肃景泰 6.2 级地震的活动图象及其特征。该次地震的类型属主 震余震型。其地震活动的特征表现为:强震前中小地震活动图象发生变化,临震 前出现中小地震活动条带;震前中小地震活动时间分维值下降并出现最低值;该 次地震发生于 6 级地震等间距分布的格局中,并呈现明显的补位特征。本文还提 出了一种利用震级测定值最大的台站的方位,确定地震破裂面的方向和节面展 布的方向的方法。

一、引言

1990 年 10 月 20 日在甘肃省景泰、天祝、古浪交界地区发生了 6.2 级地震,这是甘 肃省自 1954 年发生山丹 7 ¹/₄级和民勤 7 级大震以来最强的一次地震活动。

为了深入研究这次地震的活动特征及进行地震趋势判断,本文从测震学的角度探讨 了景泰地震的活动图象及其特征。

二、地震活动特征

1. 景泰地震的基本参数

景泰地震及其强余震的基本参数列于表1中,表2给出了景泰地区历史地震参数。

2. 区域地质构造背景2,3)

1990年10月20日景泰地震发生在老虎山北麓断裂带上。该断裂带属于毛毛山一老 虎山断裂带的东段,也是北祁连南缘昌马一祁连大断裂带的东延部分,其长约48公里,走 向北70°西。该断裂活动强烈,在全新世期间,其平均水平位错幅度为28.6米,年平均滑 动速率为2.86毫米,垂直断错幅度为10—15米,垂直升降速率为1.25毫米。该断裂带现

_		

_	
-12	1
	-

地震基本参数

-		地震日期	发震时刻	发展时刻 震中位量		震级		震中	探		Hit del ste Juri
		年月日	时分秒	北纬	东经	ML	Ms	夏度		展叶跑名	和米杯设
主 貫		1990 10 20	16 07 27.0	37*07'	103*36′	6.4			3	带根带	甘肃台两报告
			27.4	37. 12°	103. 73°		6. 2		17	泰录取甘	中国地震台网报告
				37*07′	103*37. 5/			V	15	景泰天祝交界	宏观
	[,	1990 10 20	16 39 18.0	37*06/	103*35′	4. 7			18		甘肃台网报告
	1		18.6	37.14*	103. 65*	5.6	5. 0		16		中国地震台网报告
	2	1990 10 20	18 08 51.1	37*07'	103*36′	4.4			2		甘肃台网报告
余	3	1990 10 20	18 43 17.1	37*07′	103°36′ ·	4. 3			3		甘肃台网报告
	4	1990 10 21	01 12 04.5	37*07′	103*38'	3.7			10		甘肃台网报告
震	5	1990 10 21	23 30 07.2	37*08/	103°38'	3.8			9		甘肃台两报告
	6	1990 10 22	05 49 22.1	37*05/	103*35′	3.6			5		甘肃台网报告
	7	1990 10 22	09 05 22.3	37*10	103*34'	3.8			15		甘肃台网报告
	8	1990 11 26	15 15 26.1	37*08/	103*40	4.0			29		甘肃台两报告

表 2

历史地震参数

14h 1112 1113	震中位置		震级	假动和感觉	雷击地夕	tion we also are
电展口州	北纬	东经	Ms	展于初度	展中地石	百 页科木保
1000 25 11 1 1 0 1	37. 1°	104. 1°	$6\frac{1}{4}$	VII	甘肃景泰	陕甘宁青四省强震目录
1000 - 11 月 2 日	37°05′	103°47′	$6\frac{3}{4}$ - 7. 0	VII—IX	甘肃景泰	周俊喜等研究报告 ¹⁾

代弱震一直较活跃,并且密集成带,1888 年曾发生过 6 1/4 级地震,其震中与这次 6.2 级 地震仅相距 20 公里左右。

3. 地震破裂面展布方向

景泰地震震级为 6.2 级,这是中国地震观测台网 22 个基准台站测定的平均值。单台 震级测定的最大值和最小值之差竟达 0.9 级(5.7—6.6 级),这不可能是面波震级测定的 误差所致,很可能是由于震源辐射的能量和能量谱各个方向不一样,导致了震级测定的方 向性差异。图 1 给出了各台相对景泰地震震中的方位及各台的震级测定值。从图 1 可见, 昆明和包头台震级测定值最小,分别为 5.9 级和 5.7 级;乌鲁木齐(6.6 级)、喀什(6.4 级)和南京(6.6 级)、泰安(6.5 级)台的震级测定值最大,这四个台恰好沿北西西一南东东 方向分布。

¹⁾ 周俊喜等, 1888 年景泰 6 🔒 级地震破裂带研究, 1987.

²⁾ 周俊喜等,毛毛山一老虎山断层的晚更新世以来的构造活动,1987.

³⁾ 周俊喜等,老虎山断层的全新世构造活动,1987.

S&X,76.0

由于在破裂传播的前进方向上 地震波辐射能量大,故震级测定值 最大的台站的方位可能代表了地震 的破裂面方向。如在断层破裂前进 方向上S波和面波辐射最强,且P 波的最大振幅与震源破裂面的夹角 小於45°,故位于S波和面波辐射最 强的方向,其台站测定的震级值较 大。因此,景泰6.2级地震的破裂面 方向可能是北西西一南东东方向。 利用上述方法可以在地震发生后立 即确定出地震破裂面的方向。

4. 地震活动的等间距性补位特
征

全国地震资料的研究表明,7.5 级以上巨大地震的优势分布间距为 550和1100公里,多为550公里左 右^(1,2)。根据文献〔3〕对西北地区的 统计,7级以上大地震的优势分布间 距约为400—550公里;绝大部分6 #46.2 南京6.6 月11日日日 第36.6 第36.8 第36.8 第36.8 第36.8 第36.8 第36.8 第36.8

EPC 晷素

- 图1 中国地震观测台网各台相对于景泰地震震 中的方位及震级测定值
- Fig. 1 Chinese seismic station position relative to epicentre of Jingtai earthquake and their magnitude values determined

级以上地震的分布间距为 400—500 公里。图 2 给出了西北地区 6 级地震等间距分布图。 该区共发生 6 级地震(包括余震) 8 次,震中极相近的地震作为一个破裂点考虑,则 8 次 地震分属 5 个破裂点,运用震中定位的原理,与两点等距的是其连线的平分线,两两平分 线的公共交区与各点等距,图 2 中给出平分线的公共交区范围,景泰地震位于其中的部 位。又以每个破裂点为圆心,以不同的半径画圆交切,以 400 公里为半径的结果最好,圆 的公共交切区正好是景泰地震的位置。上述资料表明,景泰地震发生在西北地区 6 级地震

图 2 西北地区 6 级地震等间距分布

呈等间距分布的格局中,呈现明显的 补位性特征。

5. 主震前小震活动空间分布特 征

图 3a 是 1965 年—1990 年 10 月 20 日景泰地区地震分布图。为了考察 不同时期地震活动图象的变化,我们 选择 1987 年 3 月 31 日—1990 年 10 月 20 日、1987 年 10 月 10 日—1990 年 10 月 20 日和 1990 年 4 月 1 日— 1990 年 10 月 20 日三个时间段,分别 给出了中小地震活动分布图,见图 3b-d。图中地震序号是以 6.2级地震为起点,向前拓展依次以 1,2,3……表示。从图中可以看出,1987 年 3月 31 日—1990 年 10月 20 日,中小地震主要呈条带状分布,外围地区也有所分布 (7,9,10,14,17,22 号地震),条带中出现一个地震围空区 (图 3b);1987 年 10月 10日—1990 年 10月 20 日,小震围空区消失,地震条带更加明显,其总体呈北西西向分布 (图 3c);1990 年 4月 1日——1990 年 10月 20 日,地震条带范围缩小,临近主震前几个月内 6 次小震呈线状展布,主震发生在小震条带的端部 (图 3d),我们称这个临近主震前的小震条带为临震条带。

三、地震序列的时间分维特征

在文献〔4〕的研究基础上,我们计算了景泰地震序列的时间分维值,并研究了它的变 化过程。图 4 为景泰地震前不同时间段的时间分维,图 5 为景泰地震余震的时间分维。选 取地震时,考虑到甘肃地震台网不同时期对该地区的监测能力,震级下限取 ML2.0,在 1966年—1973年增算了 ML3.0和 3.5 地震,1974年—1981年增算了 ML3.0 地震,1982 年—1989年增算了 ML2.5 地震,1990年 2 月 20 日—10 月 20 日仅取 2.0 以上地震。

景泰地区地震活动的时间分维数,震前若干年平均为 0.51,1990 年 2 月 20 日—10 月 20 日即临震前 8 个月是 0.30,余震序列的分维数平均为 0.63。由于计算样本不够多且 空间范围太小,对分维数的计算有所影响,但计算结果也明显地反映出,临震前的分维值

3

图 4 景泰地区震前不同时间段的时间分维

Fig. 4 Time fractal dimension diagrams of earthquakes of series interval in Jingtai region

图 5 景泰地震余震的时间分维 Fig. 5 Time fractal dimension diagram of aftershock

图6 景泰地震余震衰减P值曲线

Fig. 6 P-value curve of aftershock attenuation

-.

明显下降,震后回升且高于震前和背景值。景泰地震序列时间分维特征再次证明,强震前 的降维现象可以作为一种前兆信息。

四、余震系列衰减

1. 余震系列的时间分布

图 6 给出了景泰地震的余震衰减曲线,频次衰减系数 P 为 1.76,表明余震系列衰减 快。

图 7 给出了景泰地震余震归一化累积频度 h 值曲线,h 值为 1.6,表明该地震序列的 衰减为主震余震型序列的正常衰减,其后无更强地震发生。

景泰地震余震序列的 b 值为 0.63,属正常水平;主震释放的能 量与余震序列释放的总能量之比 为 12.5893 × 10²⁰/12.7936 × $10^{20} = 0.98$,主震震级与 10 月 20 日 16 时 39 分发生的两次最大余 震的震级差 $\Delta M \approx 1.2 - 2.0$ 级,均 表明该地震序列属主震余震型序 列。

2. 余震序列的空间分布

图 8 为景泰地震余震震中分布图,由图可见,余震活动分布密集,余震密集区长轴约 20 公里,宽约 14 公里,面积约 280 平方公里。余震分布区长轴的走向大体是北西西,与

图 8 景泰地震序列余震(Mi≥2.0)震中分布图(10月 20日—31日)

Fig. 8 The epicenter distribution (October 20-31, 1990) with $M_L \ge 2.0$ in Jingtai earthquake sequence

所处区域内毛毛山一老虎山断裂走向一致,与震源机制解⁽⁵⁾B节面(走向方位角 94°,倾向方位角 185°,倾角 70°)基本一致。

五、结论和讨论

1. 根据上述资料和讨论可以认为,景泰地震的破裂面方向为北西西向,与该区走向 为北 70°西的老虎山北麓断裂带基本一致。

一次强震发生后,如果震中位置远离断层或者该地区根本就没有地表出露的断裂构造,或者由于台站分布方位和记录不清等原因,震源机制解难以提供出结果时,可以利用台网中震级测定值最大的台站的方位,推断可能的地震破裂面方向和节面展布方向。

3. 景泰地震的发生具有明显的等间距补位特征。地震序列的类型属主震余震型。

 4. 景泰地震前出现的中小地震活动图象的变化和临震条带,以及震前的地震活动时 间分布降维过程和最低分维值的出现,无疑是两条很有价值的短临预报指标。

5. 景泰地震的发生与区域背景构造老虎山北麓断裂有一定的关系。该断裂于1888 年 曾发生一次 6 ¹/₄级地震 (震中烈度VIII—IX),时隔约 100 年又发生了 1990 年 6.2 级地震 (震中烈度VII),两次地震的高烈度区 (VII)等震线重合,震中相距仅 20 公里,震级相当, 可视为原地重复发生⁽⁶⁾。因此,在长约 48 公里的断裂上短期内再次发生大地震的可能性 不大。毛毛山一老虎山断裂的西段,构造活动情况尚不清楚,至于其中段,虽有构造活动 迹象,但晚第四纪期间以垂直升降运动为主,无更多断裂活动的明显标志。景泰 6.2 级地 震的余震非常集中,也无向该断裂西部扩展,因此毛毛山一老虎山断裂中段能否发生大地 震的问题,尚需进一步认识。

(本文1991年8月6日收到)

参考文献

- 〔1〕高建国,以新的七级半以上地震目录探讨地震间距的优势分布,西北地震学报, Vol. 2, No. 2, 1980.
- 〔2〕许绍燮,以物理模型为基础的概率性地震预报方案,地震,No. 2,1991.
- 〔3〕 阎志德,西北地区地震活动规律及其成因分析,地球物理研究所四十年,地震出版社,1990.

〔4〕李海华等,门源 6.4 级强震前地震活动时间的分维结构,西北地震学报, Vol. 9, No. 4, 1987.

[5] 温增平, 1990年10月20日天祝、古浪6.2级地震的震源机制解,西北地震学报, Vol. 13, No. 1, 1991.

[6] 阎志德等,论中国大陆地区地震的重复性及其意义,西北地震学报,Vol. 13,No. 2,1991.

(下转58页)

THE CHARACTERISTICS OF MAGNITUDE LEVEL AND PREDICTION OF SEISMIC ACTIVITY

Yang Jideng

(Seismological Bureau of Yunnan Province, Kunming, China)

Abstract

By preliminary statistics, it is discovered that the proportion of high level earthquake number to lower level event number in the world and in China is 1/8 to 1/9, that is, the latter is about 10 times greater than the former. Then the index predicting the higher magnitude earthquakes by using the lower magnitude earthquakes is studied.

(上接48页)

SEISMIC PATTERN AND CHARACTERISTICS OF THE JINGTAI EARTHQUAKE OF OCT. 20, 1990

Yan Zhide, Wang Zhouyuan

(Earthquake Research Institute of Lanzhou, SSB, China)

Abstract

On Oct. 20, 1990, there occurred a earthquake with magnitude of 6.2 in Jingtai area, Gansu, which is main — aftershock type. The seismic active feature shows: before strong earthquake, the distribution pattern of moderate and small events changed, the seismic belt appeared impending main shock: the time fractal dimension value decreased and got the minimum, the position style of equo-distance distribution of earthquakes with magnitude of 6 occurred nearby was characterized by filling location obviously. Also, this paper suggested a new method to rapidly obtain the trend of seismic rupture and nodal face from the position of stations, relative to epicentre, with the maximum values of magnitude determined.