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ABSTRACT

In this paper, a numerical simulation of the geostrophic adjustment process with C-grid network is
illustrated. A difference scheme which has the energy and potential vorticity conserving relation consistent
with the differential equations is given, and the effect of some time difference schemes on dispersion of the
gravity-inertia wave is discussed. An improved forward-backward time integration scheme is proposed for
keeping the computational stability. The effect of various boundary conditions for a finite region model
.on the gravity-inertia wave is shown by some calculated results.

I. INTRODUCTION

An important problem of numerical calculation with splitting method for the atmos-
pheric motion (Chen, 1963, 1980; Marchuk, 1968; Gadd, 1978) is how to evaluate advection
and adjustment processes properly and connect them with each other. The geostrophic
adjustment process has been indicated to be fundamentally a linear one, and its analytic
solution has been discussed (e. g., by Kibel, 1955; Monin, 1958; Zeng, 1963; Chen and
Li, 1964; etc.). In order to examine the accuracy of the difference method, it is necessary to
compare the difference solution with differential one. In this paper, an attempt is to
discuss the adjustment process in some details by use of difference method in order to
obtain a space-time difference scheme which can correctly describe the geostrophic ad-
justment process.

Winninghoftf (1968) found that the results of the geostrophic adjustment process simu-
lation with difference scheme strongly depend on the distribution of variables on the grid
points, and Arakawa and Lamb (1977) indicated that dispersion process of gravity wave
can be better simulated with so-called ““C-grid” network. Therefore the C-grid is used in
the space difference scheme in this paper. As different time difference schemes can also
affect the calculation results of the adjustment process, several time difference schemes are
examined. Consequently, an improved forward-backward time integration scheme is pro-
posed to remove the computational instability which appears during the calculation with
unimproved one. The simulation results of the adjustment process with Euler-backward
and forward-backward schemes are compared, and the effect of different lateral boundary
conditions on the adjustment process simulation in a finite region is also discussed.
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II. SIMPLIFIED EQUATIONS OF GEOSTROPHIC ADJUSTMENT PROCESS AND THEIR INTE-
GRATION CONSTRAINTS

According to the explicit splitting method of shallow-water model discussed by Chen
and Lu (1983), adjustment process equations can be simplified as

O fokx V +gvz=0, (1)
gterHvV 0, (2)

where f, is the mean Coriolis parameter and F, denotes the mean depth of the fluid.
The dot product of Eq. (1) with {,V and multiplication of Eq. (2) with gz yield

<H[x+g )+V gH,zV =0. (3)

The integration of Eq. (3) in a closed region S gives

aﬁ(H K+ Jds=0, (4)

which means that the sum of potential and Kkinetic energy is conservative in a closed
region during adjustment process.
Eq. (1) can be rewritten in the form of vorticity equation as

a§+foVV 0. (5)

Substituting Eq. (2) into Eq. (5) yields

aaf(? f) 0, (6)

where ;—'If["’z denotes potential vorticity. From Eq. (6) it is clear that
]

fo

C 2 C* fO

=Q* (%,5) ‘ (7)

where £* and 2% are the vorticity and the height of free surface at the beginning of the
adjustment process, respectively, so it means that potential vorticity is time-invariable in
the adjustment process.

HI. THE SPACE DIFFERENCE SCHEME OF THE ADJUSTMENT PROCESS AND ITS CONSERVA-
TION RELATION

By use of C-grid network shown in Fig. 1, Egs. (1) and (2) can be written in Cartesian
coordinates as
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7 g
(a‘t ui.i+1/z_fo7)|‘.j+1/z+Z(Ziﬂ/z.iﬂ/:‘Zi—llz.j+|/z) =0,

o g
: a U-‘+1/z.i+foai+1/z.i+g (zl'+1/2.i+l/:‘._2i+l/2.i—1/2) =0,

7] H,

a[ziﬂ/ljﬂﬂ + d (ui+1.f+x/z_ui.i+n/z+Ui+1/2.f+1 ”Uiﬂ/z.i) =0.

(8)

(9)

(10)

Here the time derivative remains in its differential form and its difference scheme will be

discussed in the next section.

i a1 4 .” ¢ =D z
ivye” . 'S o 'y
; ’ ¢ e :

i . .
i-% 1{“ o 5 o 'Y
j-1 -L‘(——-.-’;—JLI o

i1 i-4 L i++ 1+1

Fig. 1. Distribution of variables on the C-grid.

Let

1
Loi= d (ui.f—J/z—“i.i+1/2+U|'+1/z.i_vi—1/2.f) .

(1)

After differentiating (11) with respect to ¢t and substituting Egs. (8) and (9) into it, a

vorticity equation can be obtained as

¥] R
PSS +%° Bivirrse—Piicinn T Givisng—Bimyyz.) =05

where
O |
(a ) i.i:?(ai+1/2.i+ai-—1/2.i) ]
(@)= (a") 1,

and

Bivrse,i™ (Exy)ﬂ-l/z.i ’

Dijs1/2= (Tﬁy)i.iﬂ/z .
Let

z5=(2") ;.

Derivating (17) with respect to ¢t and substituting into (10) lead to

(12)

(13)

(14)

(15)
(16)

17
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9
ot %

Substituting (18) into (12) yields a potential vorticity conservation relation as

H
¥+ _d_o('bi.iﬂlz_")i.i—l/z+ﬂi+l/2-f_ﬂ"_l/z'i) =0. (18)

g , i"_ 2 (&)
atCi.l—Ho atzt.i =0. (19)
By integrating with respect to ¢, (19) can be written as

Lus—ga=en — 2o, 20

Now write the kinetic energy at z-points, and define that
1
K-‘+1/z.i+1/z=z(uf+1.i+1/z+“f.i+1/z+Uf+‘|/z.i+x+vf+1/z.j)- (21

Multiplying (21) by H,, differentiating it with respect to ¢ and substituting (8) and (9)
into it yield

2] H g
37 (HoK)i+1/z.i+1/z=_20—{ui+|.i+1/z [f00i+1.i+1/2_ F(2i+3/z.i+1/z‘2i+1/2.i+1/2)]
, g ) .
Ui ivis2 fo'oi.i+1/z—‘ H—(zi+1/2.1+l/z_zi—l/z.l+l/1)
g )
—Virnier| foBivvzint d (Zisrivarn—Zivisnivrse)

—Ui+1/z.i[foai+'/:.i+ g (2i+ |/z.i+1/z—2i+1/z.i—l/z):|}- (22)

Multiplying (10) by gz;,,,..7.1,. Yiclds a potential energy equation as

2 1 H
a—t ?sz»rl/:.;n/:+g'fo(unn.iul?“ui,in/z+Ui+1/z.i+1“Ui+x/z.i)2.'+x/a.i+1/::0- (23)

Adding (22) to (23) and summing up at z-points over entire region, and noticing the
fact that for variables defined at the interior points on stagged grid, there is a relation
as

— =
Z ai.i(bxy)i.i = Z_‘ bit1s2,iv1s2 (@™ ) ivrpniisrins (24)
a—point b—point
Z a;,i(Civi/2i— Cimrynii) = — Z Cir1/2.i(@isr,i —aii) s (25)
a—point c—point

and there is a similar relation with regard to the j index. Then for the adjustment process
in a closed region, it follows that

2 1

a_tz_;;m(H“K*L 7gzZ>=o. (26)
It is clear from (26) and (20) that the difference equations on C-grid satisfy the constraints
(4) and (7) determined by differential equations.



No. 2 SIMULATION OF GEOSTROPHIC ADJUSTMENT PROCESS 155

—

1v. TIME INTEGRATION SCHEMES OF GRAVITY-INERTIA WAVES AND SOME DISCUSSIONS

Winninghoff (1968) primarily compared the dispersion relations of differential equa-
tions with time-differential and space-difference equations in different space grid networks.
However, time derivation must be changed into a difference scheme in actual calculations
with result that dispersion relation is also changed. So it is necessary to analyse cal-
culation results of different-time difference schemes.

First we discuss the one-dimensional case. Egs. (8)—(10) can be rewritten as

07
5"1’*’/057:+g‘(2i+n/z"3i—l/2):0’ (27)
0 .

3 ﬁUHI/z'J’foﬂ)‘H/z:o’ (28)
& H
('thiﬂlz *"’Bof(uhl_ui):()’ (29)

where xj=jd (j=1, 2, -}, Let w denote the variables 4, v and 2z, then Egs. (27)—(29)
can be rewritten In a general form as

S =1 (30)

For Euler-backward (Matsuno) scheme, according to Eq. (30) it is seen that

wt =w AL (3D

Let
w't =ruw", (32)

and

uj a

or | o |Rrestsammman, (33)
2l \z |

then
r=Re—i”A’. (34)

Let w"*'*=r*w", substituting (33) into (27)—(29) and using (31) to eliminate r*,
then '

r=14iQA QAL | (35)
where
Q= ficos’® (fé¢)+4g£° sm(kzd) (36)
Obviously,
Rl = T-@Ar + O, @37)

L nr AL
l=pn ™ D (38)

It can be seen from (37) that |R|<<1 for QA¢t<1, in this case Matsuno scheme
is stable. The relation diagram can be drawn according to (38) in order to illustrate the
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dispersion relation, which is shown in Fig. 2 for the differential, differential-difference
equations and Matsuno scheme with L,/d=5 (Li=gH,/f?). It can be seen
from Fig. 2 that the dispersion relation of Matsuno scheme is similar to that of differential
and differential-difference equations, and the smaller At is, the more similar to each other
they become. Thus Matsuno scheme can describe the geostrophic adjustment process
well. :

3

15
13
11
= | .
§ 9{- Fig. 2. Dispersion relations for different cases.
- L Solid line: differential equations;
B Dashed line: differential-difference equations;
7 Dot-dashed line: Euler-backward scheme;
- Dotted line: forward-backward scheme.
5k (1) fAr=0.06, and (2) fAr=0.03.

1 Il : '

Il ) . } Y

Or 04 05 07 09
kd/x

However, Matsuno scheme causes wave damping when |R| <1, particularly for high
frequency waves. According to Egs. (1) and (2), the gravity-inertia wave is neutral, so it
is dispersive but not damping. Thus Matsuno scheme would cause an artificial damping
process of gravity-inertia waves which are closely related to precipitation. In addition, the
scheme is only first-order of accuracy of Af, and more computer time are required due
to two-step calculation for one time step, therefore it is necessary to design a more accu-

rate and effective scheme.
Gadd (1978) proposed a split integration scheme in which the Lax-Wendroff scheme

is used to calculate the advection process and the forward-backward scheme to the adjust-
ment process. He found that the calculation with the schemes on the C-grid network is
often unstable, and Chen and Lu (1983) also obtained a similar result. Now we analyse

causes for instability and then try to improve it.
For one-dimensional case, the forward-backward scheme can be written as

u' ' =u] —At(gd.z — fo¥) ]

U =0 — Atfo(B%) 4110

24 =2~ HoAt(8.u) (39)
where (8,a) ;= (aji1s.—ai-1s2)/d. Substituting (30) into (39) and using (32) and (34),
we have ‘
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|R z\/1+f§cosz<32i>At2 , ' (40)

[l = gpsin= (590t ). (41

The dispersion relation of the forward-backward scheme has been also drawn in Fig.
2, in which we can see that the dispersion relation is well closed to that of differential-
difference scheme, thus it can describe the adjustment process quite well. Only when
kd/=x>0.5, i. e., the wavelength is less than 4d, its dispersion relation, like that of
differential-difference equations, is quite different from that of differential equations. But
it is known from (40) that |R| is always larger than I no matter how small At is. In
other words, it is absolutely unstable even if its instability is very weak when At is
quite small.

To avoid the increasing amplitude of difference solution with time, the forward-back-
ward scheme can be improved by

urt'=u’ —At(g8.2—f?%);,

{U,"f.}z =0l — Dt fo (@) )0s

2 =20 e — Ho A (0,) 7. (42)
In the manner similar to the above derivation, when QA#+<C2. it follows that
_E iy —1 l \ '
|»] =2 sin (zQN>- (44)

Thus the improved forward-backward scheme is neutrally stable and its dispersion relation

remains unchanged.
In the two-dimensional case the improved forward-backward scheme has the form

u.".nllz:u.".iulz ‘At(gax2~fov)i".i+:/zs

U:’ﬁ}z.izvhl/z.i“‘At(gayzn“"foﬂnﬂ)i+1/z.i’ (45)
+

2‘"++1}z.i+1/z:2-n+1/z.i+n,z —H At (S,u+3d,v) Tt

The conclusion derived from (45) is the same as that in the one-dimensional case. When
the scheme is used in time integration, both computer time and internal storage required can

be saved.
V. A COMPUTATIONAL EXAMPLE OF THE BAROTROPIC ADJUSTMENT PROCESS
The character of numerical simulation for the adjustment process can be shown by a

simple example. In a manner similar to that of Obukhov (1949), suppose that the initial
flow field is a non-divergent circular vortex with a horizontally uniform free surface as

Yolx, ) =A[2 + (g)z — (1%)2 ]e—"’“*’ ,
izo(x’y) =H,, (46)

where r=v/(x—%)2+ (¥~ %) »(x0» ¥o) Is the coordinates of the center of the

disturbance, and L,=+/gH,/f, the Rossby deformation radius. The corresponding
initial wind and vorticity fields are




158 ACTA METEOROLOGICA SINICA Vol 1

47)

:u l:):u

w=— L o [+ (L) -(F)
T

Ee=V'go= ~ ﬁ[sm(f ) )8<1%>2 —<£:) +(§)‘]e—""“?“. (48)

According to Obukhov (1949), the final states of the flow, free surface height and wind

and

fields are
pom A2 () e,
A , (49)
— o r : —r3/ap%
2. H + [ kR> ]e ’
and
A r\?2 rd/,p3
oo [4=(f) e
4 - (50)
2 2 2
Vo= — oz (¥~ x0) [4—<%> :‘e" f2R?,
Ageostrophic vorticity is now defined as
! 72 g 2
{'=v ¢—foAz. (51)
Then on C-grid its difference form becomes
1
§|+1/z jv+1/2= Cn+1/ BESVS e fo ;ﬁ(vzzl)iﬂlz.iﬂ/z’ (52)
where ~
é(:irlz it+1/2 = (C“) i+1/2.0+1/29 (53)
(V z)|+x/z Jrrr=2Zirarivine T Zimngsrse T Zivsnidvars T Zivinni—1re — 42Ziv10,iv 11 (54)
Under the condition that =500 km, f,=10—%"', H,=5500 m, and A4=2.5x%10¢

m?s~!, the distributions of tangential wind speed v, and ageostrophic vorticity ¢}
along the X-axis cross the vortex center at initial time are shown in Fig. 3. ,

It is well known that the geostrophic equilibrium is reached in the adjustment process
through divergence. In the region where ageostrophic vorticity is anticyclonic, the convergent
flow develops to increase the geopotential height. The divergence field propagates to the
surroundings in wave form. Supposing that time step # =6 min, space step d =200 km and
there are 3232 grids in the integration region, i. e., the length and width of the region
are both 6200 km. The divergence distributions- calculated with Euler-backward and
forward-backward schemes are shown in Fig. 4. It can be seen that the convergence grad-
ually strengthens nearby the center and the divergence occurs in the cyclonic ageostrophic
vorticity region. The divergence variation with time calculated with forward-backward
scheme is shown in Fig. 5, which illustrates that convergence is strong around the center
when {=0.5 h and becomes divergent when =1 h, Tt is obvious that divergence field
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Fig. 5. Divergence distributions at different time calculated
with forward-backward scheme with dashed lines for
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Fig. 4. Divergence distribution at (a) t=0.2 h, and (b)
t=0.3 h, with solid line for Matsuno, and dash-

ed line for forward-backward schemes,

Fig. 6. As in Fig. 5., but with Matsuno
scheme and dashed lines for (a)
0.5, (b) 1.5,(c) 2.5,(d) 4 h, and
solid lines for (a) 1, (b) 2, (¢) 3,
(d) 5 h, respectively.
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propagates toward the surroundings and the divergence around the center vanishes on the
whole after #=2 h. The results calculated with Euler-backward scheme (see Fig. 6) are
similar to that in Fig. 5, but the amplitude of gravity-inertia wave is much smaller.

Fig. 7 shows the temporal variation of the geopotential field along the X-axis. At
the beginning, the geopotential field is uniform (not shown), then a high center is established
by adjustment process. It can be seen from Fig. 7 that in the central region the geopo-
tential is highest at =1 h and then decreases, after =3 h a high remains there and its
strength changes very little. )

Bpm
5580
5560 ]~
5540
5520
5500F = ——====
5480

1 I L L 1

—2400 —~1600 - 3800 1] 800 1600 2400 km

Fig. 7. Geopotential distributions in adjustment process at different
time. solid line: 0.5 h. Dashed line: 1 h. Dot-dashed
line: 3 h. Dotted line: 6 h.

Fig. 8 is the distributions of the tangential speed v along the X-axis at +=1 h calcu-
lated with Euler-backward and forward-backward schemes. Maximum wind speed slightly

ms ms3

3: A 8 a

4: 4

or———\/ 0
-3 -4
-gt \\J -8 N

1 H 1 1 1 X : L L L L ' L L
~2400 ~ 1600 - 800 ) 800 1600 2400 km — 2400 —~1600 - 80¢ [} 800 1600 2400 km
)

(b)

Fig. 8. Distribution of tangential wind speed v along X-axis in the
adjustment process calculated with (a) Euler-backward, (b)
forward-backward schemes. Dashed line: #=0h, and
solid line: ¢=1 h. ‘

'decreases compared with that at initial time. After then it changes very little'(not shown).

The wind speed calculated with the forward-backward scheme is a little larger than that with
Matsuno scheme. The difference of the centrai wind speeds is less than 1 m/s before and
after the geostrophic adjustment process. P Co

Several investigators (Chen, 1963, 1980; Zeng, 1963) have indicated that the geopotential
field is mainly adjusted to the flow field if the horizontal scale of the disturbance, L, is
smaller than L,. So is that in the example. Shown in Fig. 9 is the distribution of z_
and p_ along the X-axis at the end of the adjustment process calculated with Egs. (49) and

(50). Obviously, the solutions of difference and differential equations resemble each other
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Fig. 9. Distribution of (a) free surface height z,, and (b) tangential
wind speed v, along X-axis.

very well.

The above analysis is mainly the calculated results before +=6 h. As the integration
time extends, the effect of the boundary becomes significant and different results appear
during numerical simulations according to different boundary conditions.

In the geostrophic adjustment process, the wave energy disperses to infinite distance
in the form of gravity-inertia wave, so that the geostrophic equilibrium can be established.
But during numerical simulations, the integration is carried out in a finite region and
then boundary condition problem must be accounted for. In numerical models, the bound-
ary condition can be determined by several ways, such as (1) fixed boundary, (2) inter-
polation from forecasting data of a coarse grid in a large region, (3) to be assigned by
the data at interior points, and (4) so-called “sponge layer” (hereinafter referred to as
conditions 1—4). These methods are very simple, but have some shortcomings. The solu-
tion nearby the outflow boundary is determined by solutions in the interior region. The
boundary condition defined artificially would make the equation ill-posed, so that the
difference between the data defined artificially in the boundary and determined by the interior
solution may cause a strong geostrophic wind deviation nearby the boundary and then a
spurious strong gravity-inertia wave which propagates back into the interior region.

To avoid the computational instability caused by the spurious gravity-inertia wave in
the boundary region, smoothing is often used to damp the energy of gravity waves.
However, for keeping the equations well-posed there is a more reasonable way, in which
only a part of boundary values required by the linear system corresponding to the differ-
ence equations are defined and others are determined by an extrapolation method. That
is so-called “‘open boundary”. Hack and Schubert (1981) used the boundary condition
with the form in cylindrical coordinates as ’

al/n Cn arVn
ot +\/}: on 0 _ E ‘ (55)

In our simulation several boundary conditions are examined and results with or
without smoothing nearby boundaries are also compared. The sponge boundary condition

to be used is
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D
¢§n):¢5n—l),}_11,’i</%gti)let’ (56)
]

with J#; being weight coefficient and it is defined that //;=0 when j=1,J; I#;=0.4 when
j=2,J—1; W;=0.7 when j=3, J—2; W;=0.9 when j=4, J—3; and //;=1.0 when
4<j<J—3. Here J is the maximum ; index.
According to the open boundary condition (hereinafter referred to as condition 5),
the wind speed normal to the boundary in outflow region is defined to satisfy
NV w O} n
ot T e on

and the tangential wind speed in the boundary of inflow region is defined to be invariable.

Divergence fields at + =12 h calculated with different boundary conditions are shown in
Fig. 10. According to the result with condition 1 (see curve a in Fig. 10), the divergence
field does not tend to zero as time increasing because of strong boundary reflection; con-
dition 2 is not adopted; the result calculated with condition 3 is similar to that with
condition 1 (not shown); the result calculated with condition 4 (see curve b) shows divergence
with strength slightly smaller than that shown as curve a; but if a 5-point smoothing op-
erator in the first cycle of the interior region is added to condition 4, the divergence decreases
significantly (see curve c); and the divergence calculated with condition 5 is the smallest
(see curve d).

Hence it is obvious that the open boundary condition, or sponge boundary con-
dition with a suitable smoothing is the best fit for simulating the dispersion of gravity-
inertia wave properly.

VI. CONCLUSIONS

(1) A difference scheme of the equations or the adjustment process on C-grid is
proposed and it is proved that the energy and potential vorticity conservation relations in
space difference scheme are all the same as that in differential equations.

(2) The dispersion features of Matsuno and forward-backward time integration
schemes are discussed, and an improved forward-backward scheme is proposed to make
difference solution neutrally stable.

10681
IOW/V\
0
—10-
10f b
e " T~
i

0f ¢

o T T — T T
—10\-

0
-1 1 ] | | ' ) {
~2400 -1600 - 800 0 800 1600 2400 km

Fig. 10. Divergence distribution along X-axis at . =12 h calculated
with different boundary conditions,
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(3) A computational example of the adjustment process shows that the simulation of
the geostrophic adjustment process with both Matsuno and forward-backward time inte-
gration schemes is effective. The simulations calculated with these schemes are similar to
each other, but the gravity-inertia wave amplitude calculated with forward-backward
scheme is larger than that with Matsuno scheme.

(4) The effect of lateral boundary conditions on the propagation of gravity-inertia
wave is studied and it is indicated that the dispersion of gravity-inertia wave can be prop-
erly simulated with the open boundary condition.

REFERENCES

Arakawa, A., and Lamb, V. R. (1977), Computational design of the basic dynamical process of the UCLA
general circulation model, Methods in Comput. Physics, Vol. 17, Academic Press, pp. 173—265.
Chen Qiushi (1963), On the formation and destruction of the thermal wind balance in a simple baroclinic

atmosphere, Acta Met. Sinica, 33: 51—63, 153—162 (in Chinese).

——(1980), An explicit splitting computational method for analysing the physical processes of atmospheric
motion, Proceedings of the Second National Symposium on Numerical Weather Prediction, Academic Press,
Beijing, pp. 271—282 (in Chinese).

Chen Qiushi and Li Mingde (1964), Thermal wind adjustment in a 4-layer model, Acta Met. Sinica, 34:
253—270 (in Chinese).

Chen Qiushi and Lu Xianchi (1983), An explicit splitting method of shallow-water model with terrain
effect and its experiment (in Chinese, to be published).

Gadd, A. J. (1978), A split explicit integration scheme for numerical weather prediction, Quart. J. R. Met.
Soc., 104: 569-—582.

Hack, J. J. and Schubert W. H. (1981), Lateral boundary conditions for the tropical cyclone models, Mon.
Wea. Rew., 109: 1404—1420,

Kibel, I. A. (1955), On the adjustment of atmospheric motion to geostrophic equilibrium, Reports A.S. U.S.
S.R., 104: 60—63 (in Russian).

Marchuk, G. L (1968), Short term weather prediction by splitting of the complete hydrodynamic equations,
Proc. WMO[IUGG Symp. Num. Wea. Pred., Tokyo, II, pp. 1—8.

Monin, A. S. (1958), On pressure change in baroclinic atmosphere, Bulletin A.S. U.S.S.R., T. Geophys., 4:
497—514 (in Russian).

Obukhov, A. M. (1949), On geostrophic wind, Bulletin A.S. U.S.S.R., T. Geography and Geophys., 13: 281—306
(in Russian).

Winninghoff, F. L. (1968), On the adjustment toward a geostrophic balance in a simple primitive equation
model with application to the problems of initialization and objective analysis, Ph. D. thesis, Dept. of
Meteorology, Univ. of Calif. Los Angels, 161pp.



