流域地貌参数影响因子分析

王 欢^{1,2}, 刘九夫^{1,2,3}, 谢自银^{1,2}, 王文种²

(1.南京水利科学研究院水文水资源与水利工程科学国家重点实验室,江苏南京 210029;2.南京水利科学研究院,江苏南京 210029;3.水利部应对气候变化研究中心,江苏南京 210029)

摘 要:在流域地貌特征提取中采用 AGREE 算法的关键技术,将水系形态特征融入数字高程模型形成 水文数字高程模型。通过分析不同集水阈值(0.2km²、1km²、2km²、3km²、4km²、5km²)、不同比例尺(万分之 一、5万分之一、25万分之一)、不同流域面积标准(0.2km²、1km²、2km²、3km2、4km²、5km²)下流域地貌参 数,得出地貌参数的稳定性与河流分级有关,当河流级别达到 5 级时,参数不随比例尺、集水阈值、面积 标准变化而变化。在缺资料地区洪水预报中,只要具备一定精度的地形数据及相应水系,即可满足流域 地貌参数的获取。地貌瞬时单位线法相对较稳定,适用于无资料地区中小流域洪水预报。 关键词:流域地貌参数;变阈值;多比例尺;不同流域面积标准

中图分类号:P339 文献标识码:A 文章编号:1000-0852(2015)05-0030-05

1 前言

3S 技术迅速发展以及地形地貌数据精度的提高, 使得流域地形地貌特征高效准确获取成为可能,并为 研究流域地形地貌特征对流域汇流的响应提供了基础。 地貌瞬时单位线(GIUH)^[1]定量的将地貌因子引入流域 汇流,降低了对流域水文资料的依赖,为水文资料稀缺 地区的洪水模拟及预报提供了一种好的解决途径^[2]。

地貌瞬时单位线中引进的地貌因子 *R_B*(分叉比)、 *R_L*(河长比)、*R_A*(面积比)是流域地貌特征的统计值,它 们与地形地貌数据的比例尺、集水阈值的选取以及不 同流域面积标准以上河流的选取之间的关系需要做进 一步的分析工作,进而探讨影响流域汇流的流域地貌 规律。

文章分3种途径获取地貌参数,并分析其对地貌 瞬时单位线汇流成果的影响。

(1)对比分析不同集水阈值下获取的地貌参数,集 水阈值不同影响水系长度和水系分叉等属性;

(2)对比分析万分之一、5万分之一、25万分之一 3种比例尺数据获取的地貌参数;

(3)对比分析不同面积标准的河流地貌参数,河流 定义为从河口向河源搜索,选择面积唯大、河长唯长的 一支为主干,再依次类推确定支流⁽³⁾,见图 1。分别挑选 出标准面积 0.2 km^2 、 1 km^2 、 2 km^2 、 3 km^2 、 4 km^2 、 5 km^2 及以上的河流。

图1 干支流逐级递推河流 Fig.1 The river levels based on the main stream and tributaries step by step recursive

2 研究区概况及技术路线

研究区选取峡口水文站断面以上流域,为江山港的上游段。水系发源于浙江省江山市双溪口乡高滩村,海拔1110m,出口断面高程185m,干流河流比降为7.9‰。峡口以上流域面积404km²,主干流长49km。流域内年平均降雨1924mm,年平均径流1254mm。

研究区共有江山双溪口、大平头、岭头、达苧口、岩

收稿日期:2014-06-06

基金项目:国务院第一次全国水利普查(GQ510003)

作者简介:王欢(1983-),女,安徽舒城人,博士,主要从事流域地形地貌形态学方面研究。E-mail: wanghuan@nhri.cn

坑口、白水坑、峡口、东坑 8 个雨量站以及峡口水文站。基于 DEM 渲染的河流水系以及雨量站、水文站分布见图 2。

图 2 基于 DEM 渲染的河流水系以及雨量站、水文站分布图 Fig.2 Distribution of the river systems, rainfall stations and hydrometry stations based on DEM

文章选用多种比例尺数据:1:10000DEM (数字高 程模型)及 DLG(数字线划图),1:50000DEM 及 DLG, 1:250000DEM 及 DLG;峡口水文站连续 15 a 流量资料 及对应的 8 个雨量站资料。图 3 为文章技术路线。

3 地貌特征提取关键技术

DEM 在生产过程中没有采集水系形态特征的控制 高程点,提取的数字水系与实际水系存在差异,影响地 貌特征参数精度。本文采用融合数字线划图形成水文 DEM 的方法^[4](AGREE 算法如图 4 所示)提取与实际水 系吻合的数字水系。地貌特征提取流程如图 5 所示。

图 4 AGREE 算法示意图 Fig.4 The schematic of the AGREE algorithm

图 5 地貌参数提取流程 Fig.5 The geomorphology parameter extraction process

4 应用实例

文章在五万分之一比例尺数据上,分别提取集水 阈值为 0.2 km²、1 km²、2 km²、3 km²、4 km² 以及 5 km² 的 水系。水系源头随集水阈值的增大而降低,水系长度 减短,水系分叉减少。详见图 6 不同阈值 Strahler 河流 分级,表 1、2 不同集水阈值流域地貌参数。分别基于 万分之一、5 万分之一、25 万分之一比例尺资料提取 集水阈值为 1 km² 的水系,不同比例尺 Strahler 河流分 级见图 7a~e,不同比例尺流域地貌参数见表 3、4(5 万 分之一比例尺成果见图 6-b,表 1~2 阈值 1 km²)。

以 5 万分之一为数据源,集水阈值设定 0.2 km²提 取水系,在此基础上从河口向河源搜索,选择面积唯 大、河长唯长的一支为主干,再依次类推确定支流。以

31

不同流域面积标准 0.2 km²、1 km²、2 km²、3 km²、4 km² 及 5 km² 挑选河流,再转换为 strahler 河流,如图 7f 所 示,不同标准流域地貌参数见表 3~4 (流域面积 0.2 km²标准见图 6-a,表 1、2 阈值 0.2 km²)。

1

图 6 不同阈值河流分级图 Fig.6 The river grading based on the different thresholds

0	0	0		

			表1 峡[コ不同集水	阈值流	域	也貌参数1		
Table1	The gap'	\mathbf{s}	geomorphic	parameters	based	on	different	catchment	thresholds

N/条								<i>L</i> _i /km						A_{i}/km^{2}					
级别(i)	$0.2 km^2$	$1 \mathrm{km}^2$	$2 \mathrm{km}^2$	$3 \mathrm{km}^2$	$4 \mathrm{km}^2$	$5 \mathrm{km}^2$	$0.2 km^2$	$1 \mathrm{km}^2$	$2 \mathrm{km}^2$	$3 \mathrm{km}^2$	4km ²	$5 \mathrm{km}^2$	$0.2 \mathrm{km}^2$	$1 \mathrm{km}^2$	$2 \mathrm{km}^2$	$3 \mathrm{km}^2$	4km ²	$5 \mathrm{km}^2$	
1	496	112	58	41	28	22	0.59	1.27	1.76	2.05	2.89	3.22	0.47	2.26	4.42	6.05	9.18	10.9	
2	113	26	13	8	5	5	1.17	2.67	4.75	6.78	11.6	10.7	2	8.7	18.9	26.9	57.4	57	
3	28	6	4	3	1	1	2.88	8.18	10.2	11.4	32.9	32.9	8.06	37	81.5	100	404	404	
4	6	2	1	1			8.8	14.1	23	23			36.99	157	404	404			
5	2	1					14.09	19.6					157.4	404					
6	1						19.55						404.3						

表2 峡口不同集水阈值流域地貌参数2

Table2 The gap's geomorphic parameters based on different catchment threshold 2

			$R_{\scriptscriptstyle B}$					R_L						$R_{\scriptscriptstyle A}$				
级别(i)	$0.2 \mathrm{km}^2$	$1\mathrm{km}^2$	$2 \mathrm{km}^2$	$3 \mathrm{km}^2$	$4 \mathrm{km}^2$	$5 \mathrm{km}^2$	$0.2 \mathrm{km}^2$	$1 \mathrm{km}^2$	$2 \mathrm{km}^2$	$3 \mathrm{km}^2$	$4 \mathrm{km}^2$	$5 \mathrm{km}^2$	$0.2 \mathrm{km}^2$	$1\mathrm{km}^2$	$2 \mathrm{km}^2$	$3 \mathrm{km}^2$	$4 \mathrm{km}^2$	$5 \mathrm{km}^2$
2	4.39	4.31	4.46	5.13	5.6	4.4	1.97	2.11	2.69	3.31	4	3.33	4.26	3.84	4.28	4.44	6.26	5.22
3	4.04	4.33	3.25	2.67	5	5	2.47	3.06	2.16	1.68	2.84	3.07	4.04	4.25	4.31	3.73	7.04	7.1
4	4.67	3	4	3			3.06	1.72	2.25	2.01			4.59	4.26	4.96	4.03		
5	3	2					1.6	1.39					4.26	2.57				
6	2						1.39						2.57					
平均值	3.62	3.41	3.9	3.6	5.3	4.7	2.1	2.07	2.37	2.33	3.42	3.2	3.94	3.73	4.52	4.07	6.65	6.16

图 7 a~e 不同面积标准 f~g 不同比例尺河流分级图

Fig.7 The river grading based on different area levels (a-e); river grading map based on different scales (f-g)

王欢等:流域地貌参数影响因子分析

表3 峡口不同标准、比例尺流域地貌参数1

Table3 The gap's geomorphic parameters based on different standers and scales 1

$N_i/$ 条								L_i/km					A_i/km^2								
级别(i)	1	2	3	4	5	1万	25 万	1	2	3	4	5	1万	25 万	1	2	3	4	5	1万	25 万
1	113	59	41	29	22	111	113	2.23	3.43	4.28	5.39	6.37	1.27	1.17	2.25	4.33	6.05	8.76	10.9	2.24	2.02
2	27	13	8	6	5	27	30	2.52	4.82	6.78	8.55	10.7	2.75	2.13	8.34	18.90	26.88	44.7	57.4	8.53	7.7
3	6	4	3	2	1	6	6	8.46	10.23	11.42	9.72	32.9	8.46	6.49	37	81.48	100.3	89.1	404	36.9	36.6
4	2	1	1	1		2	2	14.1	22.99	22.99	23		14	12.7	157	404	404	404		157	157
5	1					1	1	19.6					19.7	19.9	404					405	406

表4 峡口不同标准、比例尺流域地貌参数2

Table4 The gap's geomorphic parameters based on different standers and scales 2

$R_{\scriptscriptstyle B}$											R_L				R_A						
级别(i)	1	2	3	4	5	1万	25 万	1	2	3	4	5	1万	25 万	1	2	3	4	5	1万	25 万
2	4.19	4.5	5.1	4.8	4.4	4.1	3.8	1.1	1.41	1.59	1.59	1.68	2.16	1.82	3.71	4.36	4.44	5.11	5.27	3.8	3.82
3	4.5	3.3	2.7	3	5	4.5	5	3.4	2.12	1.68	1.14	3.07	3.08	3.04	4.43	4.31	3.73	1.99	7.04	4.33	4.76
4	3	4	3	2		3	3	1.7	2.25	2.01	2.37		1.66	1.96	4.26	4.96	4.03	4.54		4.26	4.29
5	2					2	2	1.4					1.41	1.57	2.57					2.57	2.58
平均值	3.42	3.9	3.6	3.3	4.7	3.4	3.4	1.9	1.93	1.76	1.7	2.37	2.08	2.1	3.74	4.55	4.07	3.88	6.15	3.74	3.86

4.1 流域地貌特征分析

随着集水阈值的增大,strahler 河流条数递减,河 流总长度递减,总流域面积不变。随着标准面积增大, strahler 河流条数递减,河流总长度递减,总流域面积 不变。其中不同面积标准河流的河长、面积等特征不随 标准的变化而变化。

通过对比不同集水阈值、不同面积标准的流域地貌 参数,得出当集水阈值或标准面积在某个范围内,水系分 级维持在4以上,地貌参数之间差异小,相对稳定;当集 水阈值或标准面积增大到一定值时,水系级别减少到3 级,对应的两种方法分别在集水阈值为4km²和面积标准 为5km²时发生突变。由图6和图7可见:集水阈值大于 4km²,水系分叉减少为3级。标准面积大于5km²,水系分 叉减少为3级。而3种比例尺的变化对地貌参数计算结 果影响甚微,strahler 河流级别均为5级。见图8,表5。

图 8 峡口不同方法流域地貌参数变化 Fig.8 The gap's geomorphic parameters based on different methods

表5 峡口不同方法流域地貌参数

Table5	The gap	's geomo	rphic	parameters
	based on	different	meth	ods

	$R_{\scriptscriptstyle B}$	R_L	$R_{\scriptscriptstyle A}$
阈值 0.2km ² (Y0.2)	3.62	2.1	3.94
阈值 1km²(Y1)	3.41	2.07	3.73
阈值 2km ² (Y2)	3.9	2.37	4.52
阈值 3km ² (Y3)	3.6	3.6	4.07
阈值 4km²(Y4)	5.3	3.42	6.65
4 阈值 5km²(Y5).7	4.7	3.2	6.16
面积标准 1km ² (B1)	3.42	1.88	3.74
面积标准 2km ² (B2)	3.93	1.93	4.55
面积标准 3km ² (B3)	3.6	1.76	4.07
面积标准 4km ² (B4)	3.28	1.7	3.88
面积标准 5km ² (B5)	4.7	2.37	6.15
万分之一(C1)	3.4	2.08	3.74
25 万分之一(C25)	2.1	2.1	3.86

文章又选取洪家塔水文站以上 154km² 的流域做 相同分析(图表略)。在集水阈值 2km² 和标准流域面 积 2km² 时变化较大,河流级别均由 4 级降到 5 级。在 计算中小河流地貌参数时,根据研究区域大小合理选 择集水阈值,保证数字水系河网发育程度,一般选用 5 级左右能满足生产要求。

第5期

33

第35卷

4.2 预报结果

将不同方法计算的流域地貌特征参数应用于地貌 瞬时单位线^[5],模拟流域出口流量并与实测流量比较: 集水阈值 5km² 与面积标准 5km² 误差大,其余洪峰相 对误差在 1.3%,见图 9。

5 结论

文章分不同比例尺、不同集水阈值、不同标准提 取流域地貌参数,通过分析得出地貌参数的稳定性 与河流分级有关,当河流级别达到5级时,参数不随 3种比例尺、集水阈值、面积标准而变化。因此在缺资 料地区洪水预报中,具备一定精度的地形数据及相 应水系,即满足流域地貌参数的获取。因而地貌瞬时 单位线法相对较稳定,适用于无资料地区中小流域 洪水预报。

地貌瞬时单位线考虑流域地貌参数,有效的解 决了资料稀缺地区的洪水模拟和预报。但它对地 貌参数的应用是基于地貌参数的统计,没有达到分 布式的概念,因而地形地貌特征对流域汇流的响应 不显著。以流域单元为基本单位,将不同级别河流 之间的汇入关系、水系流域特征的描述及数学表达 应用于流域汇流,建立新的地貌参数汇流模型亟 待解决。

参考文献:

- RODRIGUEZ-ITURBE I, VALDES J B. Geomorphologic structure of hydrologic response [J]. Water Resources Research, 1979,15(6):1409 – 1420.
- [2] 芮孝芳. 地貌瞬时单位线研究进展[J]. 水科学进展, 1999,10(3):345-350.
 (RUI Xiaofang, Some advances in geomorphologic instantaneous unit hydrograph theory [J]. Advances in Water Science, 1999,10 (3):345-350. (in Chinese))
- [3] 国务院第一次全国水利普查领导小组办公室. 河湖基本情况普查[M]. 北京:中国水利水电出版社, 2010. (First National Water Resources Census Leading Group Office of the State Council. Basic Situation of River and Lakes Census [M]. Beijing: China WaterPower Press, 2010. (in Chinese))
- [4] Hellweger F. AGREE-DEM Surface Reconditioning System [DB/OL]. http://www.ce.utexas.edu/prof/maidment/gishyd97/terrain/agree/agree.htm, 1996.
- [5] 文康,金管生,李蝶娟,等. 地表径流过程的数学模拟[M]. 北京: 水利电力 出版社, 1991:263-294. (WEN Kang, JIN Guansheng, LI Diejuan, et al. Simulation of Surface Runoff Process of Mathematics [M]. Beijing: China WaterPower Press, 1991:263-294. (in Chinese))

Factor Analysis of Geomorphic Parameters

WANG Huan^{1,2}, LIU Jiufu^{1,2,3}, XIE Ziyin^{1,2}, WANG Wenzhong²

(1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,

Nanjing Hydraulic Research Institute, Nanjing 210029, China; 2. Nanjing Hydraulic Research Institute, Nanjing 210029, China; 3. Research Center for Climate Change, MWR, Nanjing 210029, China)

Abstract: In this paper, AGREE algorithm was applied to extract the geomorphic features. The system adjusts the surface elevation of the DEM to be consistent with a stream, which is formed hydrological digital elevation models integrate digital elevation models. Analysis was on the topography parameters derived from different catchment threshold (0.2km², 1km², 2km², 3km², 4km², 5km²), different scales (1:10000, 1:50000, 1:250000), and different areas of the standard basin (0.2km², 1km², 2km², 3km², 4km², 5km²). The result shows that the topography parameters do not change with catchment threshold, scales and area of the standard if the river orders is 5.

Key words: geomorphic parameters; different catchment threshold; different scales; standard of different basin areas