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ABSTRACT

An eighth-order set of ordinary differential equations, which governs the dynamics of a
quasi-geostrophic flow of the baroclinic atmosphere, is used to investigate bifurcational and chaotic
forms of the atmospheric circulation. Numerical integrations of the set exhibit period-doubling
bifurcations of the flow patterns. It would seem that the Feigenbaum relation (r,—7, )/ (Fus1—ra)=
4.6692 is satisfied approximately. Above a limit point the solutions are aperiodic and chaotic, and
a strange attractor having four inter-linked chaotic fragments appears. A window of period-6
emerges also in the chaotic region.

I. INTRODUCTION

Using a three-variable, deterministic, and nonlinear autonomous system, Lorenz (1963)
first found that the numerically determined solutions of the system (hereinafter are call-
ed strange attractors) are generally aperiodic and chaotic in certain parametric combination.
Since the 1970s, a lot of work concerning the Lorenz’s system has been done. Meantime, Fei-
genbaum (1978) put forward the concept about universality of period-doubling bifurcations of
nonlinear systems. Because the Lorenz’s system was derived from the small scale convection
cquations provided by Saltzman (1961), it must be solved how to translate from periodic
to chaotic states for the forced and dissipative systems describing the evolution of flow pat-
tern of large-scale atmospheric motions. In this paper we introduce an eighth-order set of
nonlinear equations governing the dynamics of quasi-geostrophic current, and it can exhibit
intermittent chaos through the way of period-doubling bifurcations.

. MODEL

The subscripts 1,2, and 3 are used to denote the levels of 250, 500, and 750 hPa, respec-
tively. Thus the geostrophic vorticity equation at levels 1 and 3, and the thermodynamic
equation at level 2 can be respectively written as
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where ¢, is the geostrophic streamfunction at level i, @, the individual pressure change, g*=
dfldy, f is the Coriolis yparameter, kg, k. are quantities representing vortex stretching due to
frictional convergence in the boundary layer and vertical internal friction, respectively. A
is the Rossby radius of deformation, (A*4;)~' the thermal relaxation time, and (y,—¢,)*
the given thermal forcing parameter.
Let
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where AP=P,—P,=500 hPa, L is the horizontal wavelength and taken to be 1.83 x 10¢ ¢cm.
Substituting (4) into (1)—(3), the nondimensional equation set can be obtained. Let
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where Fy=./2 cos y, F,=2 cos Nx sin y, Fe=./2 cos 2y, Fy=2 sin Nx sin 2y. N is
the zonal wavenumber in the beta-plane. The model atmosphere is confined to a periodic
beta-plane channel with zonal walls at y=0 and y= z; at the median line of the beta-plane,
@ =@,=40°N.

Substituting (5) into the nondimensional forms of Egs. (1)-—(3), we have the spectral sys-

tem:
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Egs. (6)—(13) form a forced, dissipative, and nonlinear autonomous system containing
$,and §; (i=4, K, C, N) as unknown variables. The thermal forcing parameters of the system
are 0%, 0% and 9%. 9% F reflects the x-direction thermal forcing including the difference
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between sea and land. @%F , and §%F represent the non-uniform heating of wavenumber
one and two in south-north direction, respectively. When %<0, it can be relatively
cold at low latitudes and heated at middle latitudes. By superposing 8% F . (6%<0)
on #%F ,(0%>0), the heating distribution will be similar to the character of both the solar
radiation field and the heating field in summer. The following parametric values are prescrib-
ed: K=0.0057, #'=K =0.0114, ¢=0.2, and §*=0.10, which are the same as those
in the paper by Charney and Straus (1980). Substituting these parametric values into Egs.
(6) and (7), gives J,=§,= 0.07143 and #,=22.1 m s—*, where $, and g, represent the
equilibrium solutions of ¢ 4 and 4, and #, is the component of zonally-averaged wind velocity
of wavenumber one in the south-north direction at 250 hPa, 22.1 m s—! is a reasonable
magnitude in summer. In the case that §%=0.10, one hundred and twenty values in the
range of —0.12<C0%<C0 were impartially selected in order to compute the fields of 4* by
formula (5). The computational results show that when —0.06<<{0%<—0.039, the most
heated latitudes range from 30 to 33°N. It has well been known that in East Asia the heating
centre in the south-north direction in summer is near 30°N rather than near the equator.
Therefore, we are going to investigate how the characteristics of evolution of large-scale flow
pattern change as % varies gradually within the parametric limits of —0.06=<<4%< —0.039.
It is easily found that the generalized divergence of Egs. (6)—(13)
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is always smaller than zero, which results in the continuous decrease of the phase volume and

the global stability in the process of evolution. On the other hand, the system of Egs. (6)—

(13) contains twelve nonlinear terms which may stimulate the local unstability. The common

existence of the global stability and the local unstability is a necessary condition to form the

strange attractor.

The numerical integration scheme used here is from Asselin (1972). The time step is taken
to be 3 h, and all integrations of Egs. (6)—(13) are carried out for the period of more than
20000 steps. In certain parametric combinations of the thermal forcings, the period-doubling
bifurcations of quasi-geostrophic current may obviously be exhibited.

III. PERIOD-DOUBLING BIFURCATIONS OF LARGE-SCALE ATMOSPHERIC MOTION

The system of Egs. (6)—(13) consists of two subsystems. The first one defined by Egs.
(6)—(7) can be solved analytically. The second one, a sixth-order set of ordinary nonlinear
equations, may be investigated only numerically.

In order to schematically show the integrational results of Egs. (8)—(13) we let X =y, +
Ok, Y=9n+0y, and Z=¢ .+ 0., representing the components of geostrophic streamfunc-
tion at 250 hPa in K,N, and C directions, respectively. To study the basic characteristics
of evolutions of X, Y, Z with time, the suface of section plots is used. When the system orbit
in X, Y, and Z space crosses the plane Z = —0.020 with Z<0,we plot its coordinates in the
X-Y plane. |

Let initial values @,= (Yx,» Pcor ¥ror Oxor Ocos Ony) =(—0.01150, —0.04000,
—0.00580, —0.00158, —0.04000, —0.00290), and §%=0.04.The closed centers of subtropical
highs with a reasonable magnitude appear on the geopotential height field at 250 hPa corre-
sponding to q,.

The results of integrations of Egs. (8)—(13) are as follows;
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For—0.039=0%"> —0.05285, all integrations lead to the orbits which are asymptotic to
the simple limit cycle. Correspondingly, there is only a fixed point on the surface of section
(Fig. Ia for §%= —0.0520). In the range of —0.0520==0% > —0.05285, fifteen values are sclect-
ed at equal intervals for integrating the system. When %= —0.05285, one fixed point has
suddenly become unstable and the point in the surface of section converges toward two points
at which the system orbit sequentially passes (Fig. 1b.) We regard a point with §%= —0.05285
as the first bifurcation point r, of period-doubling. Similarly, as §%* reaches -0.05323,
another bifurcation from a stable two-fixed point to an unstable two-fixed point and a stable
four-fixed point periodic cycle have occurred, as illustrated in Fig. 1c. The point with §%=
—0.05323 is considered as the second bifurcation point r, of period-doubling. When 6% =
—0.053310, a new bifurcation of period-doubling appears and a stable eight-fixed point
periodic cycle has exhibited on the surface of section. The point with ¢¥= —0.053310 is
regarded as the third bifurcation point r,. Feigenbaum (1978) has thoroughly studied the
problem about the inherent relations among bifurcatjon points of period-doubling for a
first-order difference equation and found that

Gn=(rn—ru)/(rns,~75) (14
is a universal constant being about 4.6692 for large n. Substituting r, = —0.05285, r,= —
0.05323, and §,=4.6692 into (14), we can obtain the theoretic value r; at which a bifurcation
from a stable four-point periodic cycle to a stable eight-point one should be expected theore-
tically. Comparing the practical value, r,= —0.053310, with the theoretic value, rf{= —
0.0533114, we may judge that they are very close to each other. Similarly, we have also com-
puted the theoretic values r; = —0.0533288, and r ;= —0.05333256. The former corresponds
to the bifurcation point from a stable eight-point periodic motion to a stable sixteen-point one,
and the latter from sixteen to thirty two. When % = —0.053315 and —0.0533275,which have
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Fig. 1. Period-doubling bifurcations for 6% values of (a) -0.05200, (b) -0.05285, (c) -0.05323,
(d) -0.053315, and (e) —0.053330,



No. 1 PERIOD-DOUBLING BIFURCATION OF ATMOSPHERIC MOTION 51

not passed through the point r;, there are the stable eight-fixed points on the surface of sec-
tion (see Fig. 1d), but when §%= —0.053330, which has passed through the point r/, thc
stable sixteen-fixed points on the surface of section appear clearly (Fig. le). As 8% = —0.053333,
which has got over the point r /. the results of the experiment with integration time larger than
130000 #ime steps show that the stable periodic trajectory with the thirty-two fixed points
exists definitely (figure omitied).

To summarize, along with the gradual variation of the thermal forcing parameter 0%
within the range of —0.039=¢%> —0.060, we have observed a succession of bifurcations
from the simple limit cycle, represented by the one-fixed point in the surface of section,
to more complicated limit cycles, characterized by the fixed points of periodicity 2" after n
bifurcations, and we have been able to distinguish # as large as 5 by way of numerical integr-
ations of the system of Eqs. (8)}—(13), which describes the dynamics of quasi-geostrophic
current. And the relation among the bifurcation points is restricted by the Feigenbaum’s
universal formula.

It can be obtained from (14) (see Pedlosky, 1980) that

Fomer, 42T (15)
1—¢
where &, =1/4.6692. ‘
Substituting r,= —0.05285, and r,= —0.05323 into (15), we have got that r_ = —
0.0533336. After 0¥ passes through the point r_, the evolution of flow patterns will exhibit

chaotic characteristics rather than multi-periodic states.
1V. APERIODIC EVOLUTION OF LARGE-SCALE ATMOSPHERIC MOTION

Let %= —0.05334, which has got over the critical point r., the system of Egs. (8)—(13)
is integrated for 75000 time steps. The points in the surface of section corresponding to this
integration approach an aperiodic state, and the system orbit is very strongly attracted to
the four segments A, B, C. D (Fig. 2). Compared the aspects in Fig. 2 with those in Fig. 1,
the most outstanding difference between them is that there are 2" (n=0, 1, 2, 3,4) fixed points
in Fig. 1, but there are no fixed points on the segments in Fig. 2, which reflects the distinct
structures of system orbits and the distinct characteristics of evolution of flow patterns. In
the phase space (X, Y, Z),the system orbit for §%= —0.05334 moves in the following way.
The orbit first pierces the surface of section at point 1 on segment A with Z <0, then at points
2, 3, 4, 5 with Z <0, successively. Alzhough the points always alternate sequentially in certain
order, that is, A—>B—C—D—A, there is not any point on the segments which reappear
exactly. Thus, there is not any simple or multiple periodic state. To further show the
aperiodic characteristics of the system orbit, we define the asymptotic transform functions for
a series of the points belonging to the four segments, respectively:
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Fig. 2. Surface ' of section plots for §*=—0,05334,
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Fig. 3. Asymptotic transform curves corresponding to
segments A,B,C,D; the abscissa is Yg,.x 10
and the ordinate Yg,,., x10%
where K=A, B, C, D, T denotes the transform between a given point piercing the
surface of section and the last one on the same segment. We have plotted Y, ,., vs. V,,,
(K=A,B,C,D) for #*= —0.05334. The points thus-generated lie along the curves which
look like quadric curves (Fig. 3). These are typical curves of chaotic response.
To understand the characteristics of stability, we have computed the Liapunov exponents
1 <~ , |dF
=77 % In |57
where N=26. The computational results are as follows: 1 ,=0.326, 1,=0.333, }.=0.461,
and ji,=0.346. Because i, are all larger than zero, the asymptotic motion form of the
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Fig. 4 Surface of section plots for §&=—0.053382,
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system of Egs. (8)—(13) for §%= —0.05334 corresponds to a strange attractor.

In the chaotic region with §%<r_,, we have observed the appearance of stable three-point
and six-point periodic cycles which can be called periodic windows. For example, within
the limits of —0.053384 <0 9% =< —0.053382 there is a stable periodic cycle with six fixed points
(Fig. 4). Along with the decrease of the value of 9%, apparently chaotic behavior reappears.

V. CONCLUSIONS AND DISCUSSIONS

Charney and Devore (1979) put forward the concept of multiple equilibria of the at-
mospheric circulation. Recently, a lot of research on multiple equilibria of both high-low
index circulation and subtropical flow patterns, and on transforms among multiple equilibria
has been conducted by Chinese meteorologists. The research uvsually relates with multiple
equilibria and/or limit cycles, they both are very important motion forms of forced, dis-
sipative, and nonlinear systems. Meantime, they are only a part of the evolutional proc-
esses of the systems. The whole aspect of the evolutional processes should include the
intrinsic stochasticity of deterministic equations, i1.c., chaotic or aperiodic behavior, and the
transform processes between deterministic and stochastic motion forms. In this paper,
we have obtained the aperiodic states of large scale atmospheric motion by using the low-order
spectral model. The way leading to the chaotic behavior is the period-doubling bifurcations,
immediately after the thermal forcing parameter reaches the critical point r_, the chaotic states
appear. In the chaotic region there may also exhibit stable periodic windows with three or six
fixed points.

The Lorenz system describing the small-scale convection in the atmosphere consists
of three coupled ordinary differential equations containing two nonlinear terms. Lorenz
attractor consists of two fragments. Each of them revolves, respectively, round the original
fixed point suspended in the three-dimensional space in the shape of inward spiral. While
approaching to the fixed point, one of them would suddenly and randomly jump to the outside
of another one and continue its rotation. Rossler strange attractor comnsists of only one
fragment. The system used here, which governs the dynamics of larger-scale baroclinic atmos-
pheric motion, consists of eight ordinary differential equations having twelve nonlinear terms.
In certain parametric combinations there may appear the chaotic behavior of larger-scale
atmospheric motion. The system orbit corresponding to the chaotic state always pierces
sequentially the surface of section at the points which lie on the four inter-linked fragments,
but there are no stable fixed points on the fragments.

As mentioned above,in the range of —0.039=4%"> —0.05285, the system orbits approach
to the simple stable limit cycle. It is characterized by the periodic oscillation of subtropical
high at 250 hPa along the east-west direction with periods of two-three weeks. Along with
the gradual change of the thermal parameter §¥ and the successive appearance of period-
doubling bifurcations, the periods of oscillation of subtropical high increase, and some
semiperiodic states occur. After §¥% reaches the critical point r, the semiperiodic states have
become the irregular oscillations. These motion {forms look like those in the real atmosphere.
As for the evolution of locations of subtropical high centre at the upper troposphere in summer-
time in the real atmosphere, there may appear distinct oscillation features: regular oscillations
along the east-west direction with a period of two-three weeks, quasi-periodic motions, and
irregular oscillations. Therefore, it would seem to us that there is probably the inherent rela-
tion between the maintenance and the transform of the different oscillation forms of larger-
scale atmospheric motion and the gradual change of the heating field.



54 ACTA METEOROLOGICA SINICA Vol. 2

The multiple-equilibria of the atmospheric circulation are connected with the formation
of persistent flow patterns. The limit cycles correspond to the periodic variation of flow pat-
terns, such as the periodic oscillations of subtropical high in zonal direction. The transform
among multiple equilibrium states may be related to some abrupt change of flow pattern exist-
ing in the atmosphere, sych as the seasonal abrupt change of the atmospheric circulation.
The appearance of chaotic behavior and the transform between chaotic and regular states
are probably concerned in the suspension and reappearance of quasi-periodicity in the long-
range weather process. These concepts of the nonlinear dynamics of the atmosphere are
in favour for understanding the mechanism of real flow patterns and their evolutions.
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