Al3+ 掺杂锂皂石的合成及其性能研究

王 军¹² 姚 颖¹ 孙进贺¹ 冯 军¹ 殷小杰¹² 景 燕¹

(1. 中国科学院青海盐湖研究所 ,青海 西宁 810008;

2. 中国科学院研究生院 北京 100039)

摘 要: 采用水热法合成锂皂石,以 $LiCl-MgCl_2-Na_2SiO_3-H_2O$ 为主要反应体系,加入 NaOH 调节反应体系的 pH 值 通过加入 $Al_2(SO_4)_3 \cdot 18H_2O$ 而引入 Al^{3+} 进行掺杂改性,合成了系列锂皂石。对所得产物进行 XRD 检测 探测了产物的结晶化度和结构组成。通过分光光度计和流变仪测定了产物的透光性及粘度性能,结果发现反应体系 pH 值的变化可引起锂皂石产品水分散体系的透明度; 控制一定的 Al^{3+} 加入量,可得到具有较高粘度的锂皂石产品。

关键词: 锂皂石; 掺杂改性; 水热合成; 粘度; 透光性

中图分类号: 0611.4 文献标识码: A

文章编号: 1008 - 858X(2012) 01 - 0029 - 05

前言

锂皂石是一种含镁锂的粘土类矿物 属于 蒙脱石族 是稀缺矿种。其结构单元是由两个 四面体(T)夹一个八面体(O)组成的2:1型层 状硅酸盐矿物(TOT型)。当水中锂皂石的浓 度为 1.5% ~2% 时 / 锂皂石膨胀形成包含大量 水网络结构的凝胶[1],使其具有较好的分散 性、悬浮性、离子交换性、吸附性、增稠性和触变 性 同时锂皂石化学性质稳定、绿色无毒。 基于 这些物化性能,锂皂石在化学工业、纺织工业、 日用化工、医药、油气钻井等方面具有广泛的用 途[2-4]; 锂皂石还可用作固体电解质和电池隔 膜 其有望在室温电化学装置中获得应用。由 于锂皂石本身具有独特的天然纳米结构 其片 层尺度为纳米级(单层厚度大约为 1 nm) 所以 它成为迄今发现的最适于制备纳米复合材料的 基体之一。

锂皂石的成矿条件苛刻,天然资源非常稀少,达到可供工业开采的锂皂石矿床更是罕

见,且多为混合物,很难提纯,给工业应用带 来了很大的困难。在我国,天然锂皂石资源很 少,如果进行工业化开采,与国家的保护稀缺 矿产政策不符,况且由于资源的质量原因,选 矿、提纯等过程会造成大量的尾矿,既浪费资 源,又造成周围环境的污染和生态破坏。人工 合成则可以解决以上弊端,合成品要比天然矿 物纯度高,且不含氟化物;现有的合成方法主 要有水热合成法[5-6]、微波辅助合成法[7]等。 锂皂石溶于水能形成稳定胶体,其胶体的透明 度和粘度是锂皂石的重要应用属性。掺杂改性 能有效提高材料的某些属性,在粘土类矿物的 研究中,林生岭等通过掺杂不同金属离子对聚 苯胺/蒙脱土复合材料进行掺杂改性,提高了 材料的电导率[8]。本文采用水热法合成锂皂 石,通过调节反应体系的 pH 值,并引入 Al3+ 对锂皂石进行掺杂改性;以 XRD、分光光度 和粘度分析等方法研究了合成锂皂石的结晶化 度、透光度和粘度性能,并尝试探讨了掺杂过 程中锂皂石的结构演化规律,考察了不同 pH 值对产物结晶化度的影响。

收稿日期: 2011 - 04 - 26; 修回日期: 2011 - 05 - 09

作者简介: 王 军(1986 -) ,男 .硕士研究生 ,主要研究方向为材料化学。 E - mail: mindal 27@ 126. com。

通信作者: 景 燕。E - mail: jingyanqh@ yahoo. com. cn。

1 实验

1.1 试剂、设备和主要仪器

LiCl 分析纯 ,上海化学试剂总厂生产; $Na_2SiO_3 \cdot 9H_2O$,分析纯 ,天津红岩化学试剂厂生产; $MgCl_2 \cdot 6H_2O$,分析纯 ,天津科密欧化学试剂厂生产; NaOH ,分析纯 ,烟台双双化工有限公司生产; $Al_2(SO_4)_3 \cdot 18H_2O$,分析纯 ,天津凯信化学工业有限公司生产。

X-pert Pro XRD 荷兰帕纳科公司制造; T6 新世纪紫外可见分光光度计 ,北京普析通用仪

器有限公司制造; 40 mL 内衬聚四氟乙烯水热 反应釜 济南恒化科技有限公司生产; DV – Ⅲ+ 可编程控制式流变仪 美国 BROOKFIELD 公司 生产。

1.2 锂皂石的合成

按照表 1 中的数据 ,准确称量各反应物 ,转移至反应釜中 ,加入 30 mL 去离子水 ,充分搅拌 ,得到分散均匀的白色乳状膏体; 封闭反应釜 ,放入烘箱中 ,在 200 $^{\circ}$ C 下反应 24 h。反应完成后 ,反应釜在室温条件下自然冷却 ,离心洗涤所得产物 ,直至产物中不含 $^{\circ}$ C 1 $^{\circ}$ 70 $^{\circ}$ 恒温干燥 24 h ,研磨得到合成锂皂石粉末产品。

表 1 反应物的组成

Table 1 The composition of reag	ents
--	------

m/g

					C
样品	NaOH	Al ₂ (SO ₄) ₃ •18H ₂ O	$MgCl_2 \cdot 6H_2O$	$Na_2SiO_3 \bullet 9H_2O$	LiCl
H1	0	0	3. 629	8. 120	0. 151
H2	0. 222	0	3.630	8. 120	0. 151
Н3	0. 444	0	3.629	8. 121	0. 151
H4	0.666	0	3. 629	8.120	0. 151
H5	0.888	0	3. 630	8. 120	0. 151
Н6	0. 444	0. 048	3.601	8. 121	0. 151
H7	0.444	0. 119	3. 558	8. 120	0. 151
H8	0.444	0. 238	3.486	8. 120	0. 151
Н9	0. 444	0. 477	3. 340	8.120	0. 151

1.3 XRD 分析

利用荷兰帕纳科公司生产的 XRD 衍射仪 对样品进行 XRD 衍射分析 靶材用 Cu 靶 . 管电压为 40~kV . 管电流为 30~mA . 扫描速度 $6^\circ/min$. 衍射角(2θ) 扫描范围为 $3^\circ \sim 80^\circ$.

1.4 透明度的测定

将合成的锂皂石样品($H1 \sim H5$) 配置成 1% 的水分散体系,在波长(λ) $300 \sim 800$ nm 的范围内连续测定该体系的透光率(T),得到一条透光率(T) 对应于波长(λ) 的曲线。可见光波长范围位于 $380 \sim 780$ nm 之间,可用透光率表示其水分散体系的透明度,各样品的透光率曲线见图 1。

图 1 样品 $H1 \sim H5$ 的 1% 水分散体系在可见光范围内的透光率曲线

Fig. 1 The visible transmission curve of 1% aqueous systems of samples $H1 \sim H5$

1.5 粘度的测定

将锂皂石样品配置成 2% 的水分散体系,在 ZD-2 型振荡器上中速震荡 6 h,使其均匀

分散 ,用密封膜密封后放置 120 h ,然后在 DV - III + 可编程控制式流变仪上测定其动力粘度 , 选用 $6^{\#}$ 转子,设定温度为 20 ℃ ,转速 200 r/min。测定结果列于表 2 中。

表 2 样品 H3、H6、H7、H8、H9 的 2% 水分散体系粘度数据

Table 2 The viscosity of 2% aqueous systems of samples H3 ,H6 ,H7 ,H8 ,H9

样品编号	Н3	Н6	H7	Н8	Н9
粘度/cP	825. 0	920. 5	917. 5	900. 5	765. 0

2 结果与讨论

2.1 NaOH 加入量对透明度的影响

孙红娟等指出,当反应物中 Li、Mg、Si 的物质的量之比为 0.5:2.5:4时,可得到结晶度好的锂皂石样品^[9],按此比例可得到对应的锂皂石理想化学式为:

(Na , Li) $_{0.5}\{$ (Mg $_{2.5}{\rm Li}_{0.5}\!) \ \ [{\rm Si}_4{\rm O}_{10} \ \]\!(\ {\rm OH})$ $_2\}$ · $n{\rm H}_2{\rm O}_\circ$

控制原料配比中 $MgCl_2 \cdot 6H_2O \cdot Na_2SiO_3 \cdot 9H_2O \cdot LiCl$ 的用量 ,使 $Li \cdot Mg \cdot Si$ 的物质的量之比为 0.5:2.5:4 ,同时调节 NaOH 用量来控制体系的 pH 值。获得样品的 XRD 图谱列于图 2 中 其 1% 水分散体系在可见光范围内的透光率曲线见图 1 。

图 2 样品 H1 ~ H5 的 XRD 衍射图谱 Fig. 2 The XRD patterns of samples H1 ~ H5

由图 2 样品 H1 ~ H5 均具有锂皂石的特征光谱,在 $2\theta = 6.0^{\circ}$ 、 19.5° 、 29.0° 、 36.5° 、 61.0° 附近的 5 个最强峰分别对应于锂皂石的

(001)、(100)、(110)、(300)和(220)晶面;除此之外不含其它杂质峰,说明样品 $H1 \sim H5$ 均为纯度高的锂皂石。由图 1,在可见光范围内($\lambda = 380 \sim 780$ nm),1% 锂皂石水分散体系的透光率最高为样品 H3,然后依次是 H2 > H1 > H4 > H5。样品 <math>H3 的水分散体系的透光率位于 $78.9\% \sim 96.4\%$,用肉眼观察为无色透明的水分散体系。在图 2 中,观察样品 $H1 \sim H5$ 的XRD 衍射峰,发现样品 H3 的衍射峰均强于其它样品的衍射峰,特别是在 $2\theta = 6.0^\circ$ 附近,样品 H3 的衍射峰明显强于其他样品的衍射峰。说明样品 H3 的结晶度优于其它样品,样品的结晶度是决定其水分散体系透明度的主要因素。

表1是合成锂皂石的反应物组成表,H1~H5的NaOH用量依次增加,H1为不加NaOH时合成的样品,随着NaOH的含量依次增加,样品H2、H3的1%水分散体系的透光率依次增大,在继续增大NaOH的用量后,对应样品H4、H5的透光率逐渐降低。出现这种现象的原因可能是,NaOH在反应体系中作为矿化剂,产生定向矿化作用,使反应向锂皂石生成的方向发生,从而得到了结晶化度高的锂皂石产品;但随着过量矿化剂的存在,使产物锂皂石向无定形态转化,所得锂皂石样品的XRD 衍射峰变弱,合成的锂皂石结晶化度和纯度降低,从而造成样品H4、H5的1%水分散体系的透明度降低。

2.2 Al³⁺加入量对锂皂石水分散体系粘度的 影响

按照样品 H3 的实验条件,控制反应物中NaOH、Na₂SiO₃•9H₂O、LiCl 的用量不变,调节

 $Al_2(SO_4)_3 \cdot 18H_2O$ 和 $MgCl_2 \cdot 6H_2O$ 的用量 ,以 达到掺杂引入 Al^{3+} 的目的 ,产物 $H3 \times H6 \times H7 \times H8$ 和 H9 的 XRD 衍射图谱列干图 3 中 其 2% 水分散体系的粘度数据列于表 2 中 其 XRD 衍射图谱列于图 3 中。

图 3 样品 H3 ,H6 ,H7 ,H8 和 H9 的 XRD 衍射图谱 **Fig.** 3 The XRD patterns of samples H3 ,H6 ,H7 ,H8 and H9

由表 2 样品 H3 为不掺杂 Al³+时合成的锂皂石 随着 Al³+的引入 样品 H6、H7 的水分散体系的粘度逐渐增大 ,但随着 Al³+加入量的增大 ,样品 H8、H9 的水分散体系的粘度逐渐变小。对照图 3 样品 H3、H6、H7、H8 和 H9 均具有锂皂石的特征光谱 ,其中样品 H3、H6、H7 的XRD 图谱中不含其它含杂峰 ,样品 H8 和 H9的 XRD 图谱中有杂峰存在 ,最强的 3 个杂峰分别对应于方沸石(NaAlSi₂O₆•H₂O)的(211)、(400)和(322)晶面。说明合成的样品中均含有锂皂石成分 ,其中样品 H3、H6、H7 为纯度较高的锂皂石 ,样品 H8 和 H9 为锂皂石和方沸石的混合物 ,其中样品 H8 中方沸石含量很低 ,样品 H9 中含有较多方沸石成分。

对于上述实验现象,本项研究尝试从 Al³⁺ 的引入导致锂皂石分子结构变化和 Al³⁺ 交联 锂皂石胶粒两个方面来解释。锂皂石属于层状 硅酸盐矿物 在四面体与八面体的匹配关系中, [SiO₄]四面体所组成的 1 个六方环范围内有 3 个八面体与之相适应,当这 3 个八面体中心位

置均为 2 价离子(Mg²⁺) 占据时,所形成的结构 为三八面体结构(如样品 H3); 若其中充填的 为3价离子(Al3+),为使电价平衡,这3个八面 体位置将只有两个离子充填,有一个是空着的, 此为二八面体型结构。样品 H3 为三八面体构 型 3 个八面体中共含有 3 个 Mg²⁺ ,当引入 Al³⁺后,一部分Al³⁺取代Mg²⁺,从而使Al³⁺和 Mg²⁺同时存在 结果形成过渡型结构。在过渡 型结构中,由于位于八面体中的离子电荷不平 衡 在锂皂石分散于水中时 使得锂皂石胶粒电 荷不平衡性加剧,从而带有更多的负电荷;同 时 部分 Al3+ 以离子形态进入溶液中,与锂皂 石胶粒表面结构中的[SiO4]四面体发生交联, 从而在分散体系中形成以 Al3+ 为纽带的锂皂 石胶粒网状结构 结果导致硅酸镁锂粘度增大。 所以在掺杂 Al3+后,所得样品 H6、H7、H8 的水 分散体系的粘度均高于样品 H3 的水分散体系 的粘度,但随着 Al3+加入量的增大,样品 H8 中 出现杂质方沸石,在样品 H9 中方沸石含量增 大 杂质增多 , 锂皂石的有效成分减少 , 从而使 其水分散体系的粘度逐渐降低。

3 结 论

- 1) 以 LiCl-MgCl₂-Na₂SiO₃-H₂O 为主要反应体系 ,采用水热法合成锂皂石时 适量 NaOH 的加入有利于合成结晶完好的锂皂石样品 ,但 NaOH 加入量过大 ,会使锂皂石产品向无定形态转化:
- 2) 适量 Al³⁺的加入,可以获得粘度性能和纯度均很好的锂皂石产品,但 Al³⁺加入量过大时,产生方沸石杂质,从而使锂皂石纯度降低,结果使得其水分散体系的粘度降低。

参考文献:

- [1] 丁兆明 赵兴森. 锂镁皂土——种稀缺矿种的形成机理和用途[J]. 地质与勘探 2000 36(4):41-44.
- [2] Ray S S ,Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century

- materials world [J]. Progress in Materials Science 2005 50 (B): 962 1079.
- [3] Korosi L ,Nemeth J ,DeRany I. Structural and photooxidation properties of SiO₂ /layer silicate nanocomposites [J]. Applied Clay Science 2004 27(1-2):29-40.
- [4] Pieper H ,Bosbach D ,Panak P J et al. Eu(III) coprecipitation with the trioctahedral clay mineral ,hectorite [J]. Clays and Clay Minerals 2006 54(1):45 −53.
- [5] 季金华. 锂皂石的人工合成及其结构性能研究[J]. 硅酸盐学报 ,1991 ,19(3):249-257.
- [6] 周春晖 杜泽学 李小年 . 水热体系合成锂皂石结构 的演化和影响规律研究 [J]. 无机化学学报 .2005 .25 (9):1327 -1332.
- [7] Vicente I Salagre P Cesteros Y et al. Fast microwave synthesis of hectorite [J]. Applied Clay Science 2009 A3(1): 103-107.
- [8] 林生岭, 万勇. 掺杂不同金属离子聚苯胺/蒙脱土的制备及其电导率研究[J]. 材料导报, 2010, 24(8):73-75.
- [9] 孙红娟,刘颖,彭同江,等. 锂皂石的水热合成与表征 [J]. 人工晶体学报 2008 37(4):844-848.

Synthesis and Properties of Al³⁺ – doped Hectorite

WANG Jun^{1 2} ,YAO Ying¹ ,SUN Jin-he¹ ,MA Jun¹ ,YIN Xiao-jie^{1 2} ,JING Yan¹ (1. Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining \$10008 China;

2. Graduate University of the Chinese Academy of Sciences Beijing ,100039 ,China)

Abstract: The hectorite was synthesized by hydrothermal method with LiCl ${}_{2}MgCl_{2} \cdot 6H_{2}O$ and NaSiO $_{3}$. The pH value of aqueous system was tuned with NaOH. A series of hetorite dopped Al^{3+} samples were synthesized with introduction of $Al_{2}(SO_{4})_{3} \cdot 18H_{2}O$. The samples were characterized by X-ray diffraction (XRD) ${}_{2}$ photometric analysis and viscosity analysis. The results show that hectorite with good transmission and high viscosity could be synthesized under controlled concentration of Al^{3+} and pH value of aqueous system.

Key words: Hectorite; Doping; Hydrothermal synthesis; Viscosity; Transmission