# Al<sup>3+</sup> 掺杂锂皂石的合成及其性能研究

王  $\mathbf{F}^{1,2}$  姚 颖<sup>1</sup> 孙进贺<sup>1</sup> 冯  $\mathbf{F}^{1}$  殷小杰<sup>1,2</sup> 景 燕<sup>1</sup>

(1. 中国科学院青海盐湖研究所, 青海 西宁 810008;

2. 中国科学院研究生院 北京 100039)

摘 要:采用水热法合成锂皂石,以LiCl-MgCl<sub>2</sub>-Na<sub>2</sub>SiO<sub>3</sub>-H<sub>2</sub>O为主要反应体系,加入 NaOH 调节反应体系的 pH值,通过加入Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>•18H<sub>2</sub>O而引入Al<sup>3+</sup>进行掺杂改性,合成了系列锂皂石。对所得产物进行 XRD 检测,探测了产物的结晶化度和结构组成。通过分光光度计和流变仪测定了产物的透光性及粘度性能,结 果发现反应体系 pH值的变化可引起锂皂石产品水分散体系的透明度;控制一定的Al<sup>3+</sup>加入量,可得到具有 较高粘度的锂皂石产品。

关键词:锂皂石;掺杂改性;水热合成;粘度;透光性

中图分类号: 0611.4 文献标识码: A

文章编号:1008-858X(2012)01-0029-05

## 前言

锂皂石是一种含镁锂的粘土类矿物 属于 蒙脱石族 是稀缺矿种。其结构单元是由两个 四面体(T) 夹一个八面体(O) 组成的 2:1 型层 状硅酸盐矿物(TOT型)。当水中锂皂石的浓 度为1.5%~2%时, 裡皂石膨胀形成包含大量 水网络结构的凝胶<sup>[1]</sup>,使其具有较好的分散 性、悬浮性、离子交换性、吸附性、增稠性和触变 性 同时锂皂石化学性质稳定、绿色无毒。 基于 这些物化性能,锂皂石在化学工业、纺织工业、 日用化工、医药、油气钻井等方面具有广泛的用 途<sup>[2-4]</sup>;锂皂石还可用作固体电解质和电池隔 膜 其有望在室温电化学装置中获得应用。由 于锂皂石本身具有独特的天然纳米结构,其片 层尺度为纳米级(单层厚度大约为1 nm),所以 它成为迄今发现的最适于制备纳米复合材料的 基体之一。

锂皂石的成矿条件苛刻,天然资源非常稀 少,达到可供工业开采的锂皂石矿床更是罕

见,且多为混合物,很难提纯,给工业应用带 来了很大的困难。在我国,天然锂皂石资源很 少,如果进行工业化开采,与国家的保护稀缺 矿产政策不符,况且由于资源的质量原因,选 矿、提纯等过程会造成大量的尾矿,既浪费资 源,又造成周围环境的污染和生态破坏。人工 合成则可以解决以上弊端,合成品要比天然矿 物纯度高,且不含氟化物;现有的合成方法主 要有水热合成法<sup>[5-6]</sup>、微波辅助合成法<sup>[7]</sup>等。 锂皂石溶于水能形成稳定胶体,其胶体的透明 度和粘度是锂皂石的重要应用属性。掺杂改性 能有效提高材料的某些属性,在粘土类矿物的 研究中,林生岭等通过掺杂不同金属离子对聚 苯胺/蒙脱土复合材料进行掺杂改性,提高了 材料的电导率<sup>[8]</sup>。本文采用水热法合成锂皂 石,通过调节反应体系的 pH 值,并引入 Al<sup>3+</sup> 对锂皂石进行掺杂改性;以 XRD、分光光度 和粘度分析等方法研究了合成锂皂石的结晶化 度、透光度和粘度性能,并尝试探讨了掺杂过 程中锂皂石的结构演化规律,考察了不同 pH 值对产物结晶化度的影响。

作者简介: 王 军(1986 –) , 男, 硕士研究生, 主要研究方向为材料化学。E – mail: minda127@126. com。

通信作者:景 燕。E - mail: jingyanqh@ yahoo. com. cn。

收稿日期: 2011-04-26; 修回日期: 2011-05-09

盐湖研究

### 1 实 验

#### 1.1 试剂、设备和主要仪器

LiCl,分析纯,上海化学试剂总厂生产; Na<sub>2</sub>SiO<sub>3</sub>•9H<sub>2</sub>O,分析纯,天津红岩化学试剂厂 生产; MgCl<sub>2</sub>•6H<sub>2</sub>O,分析纯,天津科密欧化学试 剂厂生产; NaOH,分析纯,烟台双双化工有限公 司生产; Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>•18H<sub>2</sub>O,分析纯,天津凯信 化学工业有限公司生产。

X-pert Pro XRD ,荷兰帕纳科公司制造; T6 新世纪紫外可见分光光度计 ,北京普析通用仪 器有限公司制造;40 mL 内衬聚四氟乙烯水热 反应釜 济南恒化科技有限公司生产;DV – Ⅲ+ 可编程控制式流变仪 美国 BROOKFIELD 公司 生产。

#### 1.2 锂皂石的合成

按照表 1 中的数据,准确称量各反应物,转 移至反应釜中,加入 30 mL 去离子水,充分搅 拌,得到分散均匀的白色乳状膏体;封闭反应 釜,放入烘箱中,在 200 ℃下反应 24 h。反应完 成后,反应釜在室温条件下自然冷却,离心洗涤 所得产物,直至产物中不含 Cl<sup>-</sup>;70 ℃恒温干 燥 24 h,研磨得到合成锂皂石粉末产品。

|    |        | Table 1 Th                                           | e composition of reage | nts                     | m/g    |
|----|--------|------------------------------------------------------|------------------------|-------------------------|--------|
| 样品 | NaOH   | Al <sub>2</sub> (SO <sub>4</sub> ) $_3 \cdot 18H_2O$ | $MgCl_2 \bullet 6H_2O$ | $Na_2SiO_3 \cdot 9H_2O$ | LiCl   |
| H1 | 0      | 0                                                    | 3. 629                 | 8. 120                  | 0. 151 |
| H2 | 0. 222 | 0                                                    | 3.630                  | 8. 120                  | 0. 151 |
| H3 | 0.444  | 0                                                    | 3.629                  | 8. 121                  | 0. 151 |
| H4 | 0.666  | 0                                                    | 3. 629                 | 8.120                   | 0. 151 |
| H5 | 0.888  | 0                                                    | 3.630                  | 8. 120                  | 0. 151 |
| H6 | 0.444  | 0. 048                                               | 3.601                  | 8. 121                  | 0. 151 |
| H7 | 0.444  | 0. 119                                               | 3. 558                 | 8. 120                  | 0. 151 |
| H8 | 0.444  | 0. 238                                               | 3.486                  | 8. 120                  | 0. 151 |
| H9 | 0. 444 | 0. 477                                               | 3.340                  | 8.120                   | 0. 151 |

表1 反应物的组成

#### 1.3 XRD 分析

利用荷兰帕纳科公司生产的 XRD 衍射仪 对样品进行 XRD 衍射分析 靶材用 Cu 靶 ,管电 压为 40 kV ,管电流为 30 mA 扫描速度6°/min , 衍射角(20) 扫描范围为 3°~80°。

#### 1.4 透明度的测定

将合成的锂皂石样品(H1 ~ H5) 配置成 1%的水分散体系,在波长(λ)300~800 nm的 范围内连续测定该体系的透光率(*T*),得到一 条透光率(*T*)对应于波长(λ)的曲线。可见光 波长范围位于380~780 nm 之间,可用透光率 表示其水分散体系的透明度,各样品的透光率 曲线见图1。



### 图 1 样品 H1 ~ H5 的 1% 水分散体系在可见光范 围内的透光率曲线

Fig. 1 The visible transmission curve of 1% aqueous systems of samples H1 ~ H5

#### 1.5 粘度的测定

将锂皂石样品配置成 2% 的水分散体系, 在 ZD-2 型振荡器上中速震荡 6 h,使其均匀 分散,用密封膜密封后放置 120 h 然后在 DV – Ⅲ+ 可编程控制式流变仪上测定其动力粘度,选用 6<sup>#</sup>转子,设定温度为 20 ℃,转速 200 r/min。测定结果列于表 2 中。

| 表 2 | 样品 H3- | H6 H7 | 'H8'H3 | 的2% | 水分散 | 如体系制 | 钻度数据 |
|-----|--------|-------|--------|-----|-----|------|------|
|-----|--------|-------|--------|-----|-----|------|------|

 Table 2
 The viscosity of 2% aqueous systems of samples H3
 H6
 H7
 H8
 H9

| 样品编号  | H3    | H6     | H7    | H8     | H9    |
|-------|-------|--------|-------|--------|-------|
| 粘度/cP | 825.0 | 920. 5 | 917.5 | 900. 5 | 765.0 |

### 2 结果与讨论

#### 2.1 NaOH 加入量对透明度的影响

孙红娟等指出,当反应物中 Li、Mg、Si 的物质的量之比为 0.5:2.5:4时,可得到结晶度好的锂皂石样品<sup>[9]</sup>,按此比例可得到对应的锂皂石理想化学式为:

(Na ,Li)  $_{0.5}$  { (Mg<sub>2.5</sub>Li<sub>0.5</sub>) [Si<sub>4</sub>O<sub>10</sub> ](OH)  $_2$  } • nH<sub>2</sub>O  $_{\circ}$ 

控制原料配比中 MgCl<sub>2</sub>•6H<sub>2</sub>O、Na<sub>2</sub>SiO<sub>3</sub>• 9H<sub>2</sub>O、LiCl 的用量,使 Li、Mg、Si 的物质的量之 比为 0.5:2.5:4,同时调节 NaOH 用量来控制 体系的 pH 值。获得样品的 XRD 图谱列于图 2 中,其 1% 水分散体系在可见光范围内的透光 率曲线见图 1。





由图 2 样品 H1 ~ H5 均具有锂皂石的特 征光谱,在 2θ = 6.0°、19.5°、29.0°、36.5°、 61.0°附近的 5 个最强峰分别对应于锂皂石的 (001)、(100)、(110)、(300)和(220)晶面;除 此之外,不含其它杂质峰,说明样品H1~H5均 为纯度高的锂皂石。由图1,在可见光范围内 ( $\lambda$  = 380~780 nm),1%锂皂石水分散体系的 透光率最高为样品H3,然后依次是H2>H1> H4>H5。样品H3的水分散体系的透光率位 于78.9%~96.4%,用肉眼观察为无色透明的 水分散体系。在图2中,观察样品H1~H5的 XRD衍射峰,发现样品H3的衍射峰均强于其 它样品的衍射峰,特别是在2 $\theta$  = 6.0°附近,样 品H3的衍射峰明显强于其他样品的衍射峰。 说明样品H3的结晶度优于其它样品,样品的 结晶度是决定其水分散体系透明度的主要因 素。

表1是合成锂皂石的反应物组成表,H1~H5 的 NaOH 用量依次增加,H1 为不加 NaOH 时合成的样品 随着 NaOH 的含量依次增加,样品 H2、H3 的 1% 水分散体系的透光率依次增大 在继续增大 NaOH 的用量后,对应样品 H4、H5 的透光率逐渐降低。出现这种现象的原因可能是,NaOH 在反应体系中作为矿化剂,产生定向矿化作用,使反应向锂皂石生成的方向发生,从而得到了结晶化度高的锂皂石产品;但随着过量矿化剂的存在,使产物锂皂石向无定形态转化,所得锂皂石样品的 XRD 衍射峰变弱,合成的锂皂石结晶化度和纯度降低,从而造成样品 H4、H5 的 1% 水分散体系的透明度降低。

# 2.2 Al<sup>3+</sup>加入量对锂皂石水分散体系粘度的 影响

按照样品 H3 的实验条件,控制反应物中 NaOH、Na<sub>2</sub>SiO<sub>3</sub>•9H<sub>2</sub>O、LiCl 的用量不变,调节 Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>•18H<sub>2</sub>O 和 MgCl<sub>2</sub>•6H<sub>2</sub>O 的用量,以 达到掺杂引入 Al<sup>3+</sup>的目的,产物 H3、H6、H7、 H8 和 H9 的 XRD 衍射图谱列于图 3 中,其 2% 水分散体系的粘度数据列于表 2 中 其 XRD 衍 射图谱列于图 3 中。





由表2 样品 H3 为不掺杂 Al<sup>3+</sup>时合成的锂 皂石 随着 Al<sup>3+</sup>的引入,样品 H6、H7 的水分散 体系的粘度逐渐增大,但随着 Al<sup>3+</sup>加入量的增 大 样品 H8、H9 的水分散体系的粘度逐渐变 小。对照图 3 样品 H3、H6、H7、H8 和 H9 均具 有锂皂石的特征光谱,其中样品 H3、H6、H7 的 XRD 图谱中不含其它含杂峰,样品 H8 和 H9 的 XRD 图谱中有杂峰存在,最强的 3 个杂峰分 别对应于方沸石(NaAlSi<sub>2</sub>O<sub>6</sub>•H<sub>2</sub>O)的(211)、 (400)和(322)晶面。说明合成的样品中均含 有锂皂石成分,其中样品 H3、H6、H7 为纯度较 高的锂皂石,样品 H8 和 H9 为锂皂石和方沸石 的混合物,其中样品 H8 中方沸石含量很低,样 品 H9 中含有较多方沸石成分。

对于上述实验现象,本项研究尝试从 Al<sup>3+</sup> 的引入导致锂皂石分子结构变化和 Al<sup>3+</sup> 交联 锂皂石胶粒两个方面来解释。锂皂石属于层状 硅酸盐矿物,在四面体与八面体的匹配关系中, [SiO<sub>4</sub>]四面体所组成的1个六方环范围内有3 个八面体与之相适应,当这3个八面体中心位

置均为2价离子(Mg<sup>2+</sup>)占据时,所形成的结构 为三八面体结构(如样品 H3);若其中充填的 为3价离子(Al<sup>3+</sup>),为使电价平衡,这3个八面 体位置将只有两个离子充填,有一个是空着的, 此为二八面体型结构。样品 H3 为三八面体构 型 3 个八面体中共含有 3 个 Mg<sup>2+</sup>,当引入 Al<sup>3+</sup>后,一部分 Al<sup>3+</sup> 取代 Mg<sup>2+</sup>,从而使 Al<sup>3+</sup>和 Mg<sup>2+</sup>同时存在 结果形成过渡型结构。在过渡 型结构中,由于位于八面体中的离子电荷不平 衡 在锂皂石分散于水中时 使得锂皂石胶粒电 荷不平衡性加剧,从而带有更多的负电荷;同 时 部分 Al<sup>3+</sup> 以离子形态进入溶液中,与锂皂 石胶粒表面结构中的[SiO4]四面体发生交联, 从而在分散体系中形成以 Al<sup>3+</sup>为纽带的锂皂 石胶粒网状结构 结果导致硅酸镁锂粘度增大。 所以在掺杂 Al<sup>3+</sup>后,所得样品 H6、H7、H8 的水 分散体系的粘度均高于样品 H3 的水分散体系 的粘度 但随着 Al<sup>3+</sup>加入量的增大 样品 H8 中 出现杂质方沸石,在样品H9中方沸石含量增 大 杂质增多 裡皂石的有效成分减少 从而使 其水分散体系的粘度逐渐降低。

# 3 结 论

1) 以 LiCl-MgCl<sub>2</sub>-Na<sub>2</sub>SiO<sub>3</sub>-H<sub>2</sub>O 为主要反应 体系,采用水热法合成锂皂石时,适量 NaOH 的 加入有利于合成结晶完好的锂皂石样品,但 NaOH 加入量过大,会使锂皂石产品向无定形 态转化;

2) 适量 Al<sup>3+</sup>的加入,可以获得粘度性能和 纯度均很好的锂皂石产品,但 Al<sup>3+</sup>加入量过大 时,产生方沸石杂质,从而使锂皂石纯度降低, 结果使得其水分散体系的粘度降低。

#### 参考文献:

- [1] 丁兆明,赵兴森. 锂镁皂土—一种稀缺矿种的形成机理 和用途[J]. 地质与勘探 2000 36(4):41-44.
- [2] Ray S S ,Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21<sup>st</sup> century

materials world[J]. Progress in Materials Science 2005 50
( B) : 962 - 1079.

- [3] Korosi L ,Nemeth J ,DeRany I. Structural and photooxidation properties of SiO<sub>2</sub> /layer silicate nanocomposites [J]. Applied Clay Science 2004 27(1-2): 29 - 40.
- [4] Pieper H ,Bosbach D ,Panak P J *et al*. Eu( Ⅲ) coprecipitation with the trioctahedral clay mineral ,hectorite [J]. Clays and Clay Minerals 2006 54(1):45-53.
- [5] 季金华. 锂皂石的人工合成及其结构性能研究[J]. 硅酸盐学报,1991,19(3):249-257.
- [6] 周春晖 杜泽学,李小年,等.水热体系合成锂皂石结构 的演化和影响规律研究[J].无机化学学报,2005,25 (9):1327-1332.
- [7] Vicente I Salagre P ,Cesteros Y *et al.* Fast microwave synthesis of hectorite [J]. Applied Clay Science 2009 A3(1): 103 – 107.
- [8] 林生岭,万勇.掺杂不同金属离子聚苯胺/蒙脱土的制 备及其电导率研究[J].材料导报,2010,24(8):73 – 75.
- [9] 孙红娟,刘颖,彭同江,等. 锂皂石的水热合成与表征 [J]. 人工晶体学报 2008 *3*7(4):844-848.

# Synthesis and Properties of Al<sup>3+</sup> – doped Hectorite

WANG Jun<sup>12</sup>, YAO Ying<sup>1</sup>, SUN Jin-he<sup>1</sup>, MA Jun<sup>1</sup>, YIN Xiao-jie<sup>12</sup>, JING Yan<sup>1</sup>

(1. Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining \$10008 China;
2. Graduate University of the Chinese Academy of Sciences Beijing 100039 China)

**Abstract**: The hectorite was synthesized by hydrothermal method with LiCl  ${}_{M}gCl_{2} \cdot 6H_{2}O$  and NaSiO<sub>3</sub>. The pH value of aqueous system was tuned with NaOH. A series of hetorite dopped Al<sup>3+</sup> samples were synthesized with introduction of Al<sub>2</sub>(SO<sub>4</sub>)  ${}_{3} \cdot 18H_{2}O$ . The samples were characterized by X-ray diffraction (XRD) photometric analysis and viscosity analysis. The results show that hectorite with good transmission and high viscosity could be synthesized under controlled concentration of Al<sup>3+</sup> and pH value of aqueous system.

Key words: Hectorite; Doping; Hydrothermal synthesis; Viscosity; Transmission