3

76

| -                 | * ·       |
|-------------------|-----------|
| بالمراجع والمراجع |           |
| おいて、「おい」          | 龙入 小区     |
|                   |           |
| ノキナドリオアへ          | (又叫以康孤穴派) |
| (育海自地展局)          | (三州地展研元州) |
|                   | · · · ·   |
|                   |           |

本文利用1979年6月4日青海乐都爆破甘肃、青海两省地震台站的记录资料,计算了两 省部分地区的平均地壳厚度和平均地震波速度,并做了初步讨论。

一、爆破点环境和台站观测

乐都县爆破点位于青海省东部,东经102°21.0′,北纬36°22.5′。海拔2300米,爆破点距山顶300米,距沟底200米,炸药分别装在深40米的四个花岗岩洞内,采用整点整分同时起爆。



为了进行爆破观测,青海省地震局采取了一些措施:在爆破点附近增设了临时观测台, 提高个别固定台站仪器的放大倍数和滚筒转速,并于起爆前统一对钟,核对钟差。此外,甘 肃、青海两省大部份台站都有较好记录,为这次爆破提供了主要资料。台站和爆破点位置见 图1。

根据对记录震相的运动学和动力学特性的分析, P、P。、P1和S11波在较多 台 站记录 清楚, 其基本特征是: (1)P波段, 主 要是 P 波和P11波很发育, 某些台站记录的 P 波 振 幅比S波振幅强; (2)在短距离上, 面波较发育, 尤其在垂直分向, 这可能 是爆破在表面 复盖层激起的短周期瑞利型面波; (3)一些台站的记录波形出现振幅和周期均变化很小的 波列, 波型光滑, 似正弦形。

此外,在位于爆破点东南300-400公里的甘肃甘谷、礼县、天水台记录的 P<sub>a</sub>波之后1-2 秒处,还有一清楚的震相,振幅比P<sub>a</sub>的大,如图 2。由于资料不足,难以 确 认 该 震相的性质。

## 二、地震波速度和地壳厚度

以12时00分00.0秒为初定起爆时间,量取各台清楚滤相的到时t,并在百万分之一地图上 量出各台震中距Δ列于附表,求出发震时刻(起爆时间)、地震波速度及地壳厚度参数如下:

1)发震时刻T。及地 壳 表 层 P 甘心的 波速度VF 4=325公室 111 Million Wirson young 将∆<200公里的 初 至 波, 暂 时做为盲达P波处理。 根据P波的走时方程 Ri P.  $T\overline{P} = T_{\circ} + \frac{\Delta}{V\overline{p}}$ (1)▲=353公理 化風台 其中TF为P波到时,T。为发 震时刻, Vp为直达P波的速度。 Ri Pi  $T_{P} \sim \Delta$ 图,用最小二乘法求出发震 时刻T。为12时00分1.2秒, VF= 甘谷、礼县台垂直向P波段记录 图 2 5.89±0.20公里/秒。

2)用反射波求平均地壳厚度H和地壳内的平均速度 V

由于台站布局不够合理,难以追踪康拉德界面或地壳内其他间断面的反射波和首波。但 在震中距为80~300多公里的台站上都接收到了较明确的地壳底面反射波P<sub>11</sub>和S<sub>11</sub>。因此, 本地区的地壳可暂时视为单层地壳。

考虑到台站的布局和甘肃、青海地区地壳厚度可能存在的差异,这里只利用爆破点至甘 肃陇西、天水、成县一线附近的台站(以下称甘肃东部地区)记录到的P<sub>11</sub>和S<sub>11</sub>波 资 料 求 出该地区的地壳厚度和波速度。

假定地壳底面为一水平面,则表面爆破产生的地壳底面反射波走时为

$$t_{11} = \sqrt{4 H^2 + \Delta^2} / V$$
 (2)

其中, H为地壳厚度; V为地壳内P或S波的平均速度。用最小二乘法求出 最 佳 拟 合时距曲

- 线,然后可得出波速度和地壳厚度值如下:
  - 由 $P_{11}$ 波得:  $H_1 = 49.0 \pm 10.2 公里,$   $\overline{V}_{p} = 6.17 \pm 0.19 公里/秒;$   $H_2 = 48.1 \pm 8.0 公里,$  $\overline{V}_{s} = 3.58 \pm 0.08 公里/秒.$

3)用地壳底面的首波P\_计算地壳界面下的P波速度V<sub>P</sub>\_和地壳厚度H。

利用甘肃东部地区的P。波资料,由P。波走时公式

$$T_{p_{n}} = 2H \sqrt{\frac{1}{V_{p_{n}}^{2}} - \frac{1}{V_{p_{n}}^{2}} + \frac{\Delta}{V_{p_{n}}}}$$
(3)

求得 $V_{5.}$  = 8.08±0.07公里/秒,时间轴截距t<sub>0</sub>=10.3秒。 取 $\overline{V}_{5.}$  = 6.17公里/秒,利用

$$t_{o} = 2 H \sqrt{\frac{1}{\overline{V_{o}^{2}}} - \frac{1}{V_{pn}^{2}}}$$
 (4)

求出地壳厚度H<sub>3</sub> = 49.3 ± 2.0公里,与用反射波求出的值很接近,取其平均值得:  $\overline{H} = 48.8$ 公里.

💮 各种波走时曲线和资料点绘于图3。

图 3 上, 青海乌兰等四个台的P。波走时全部在走时曲线之上, 假定青海 东 部 与甘肃东



部的地壳下速度 V<sub>9</sub> 和地壳内平均速度 √<sub>9</sub> 无多大差别,则可利用(3)式求出爆破点至该四 台的平均地壳厚度:

取平均值为H=57、5±2.5公里。

## 三、结 论 与 讨 论

为了对比,我们将本文与有关文献提供的波速和地壳深度资料列于表 1 和表 I.。

表1

| 资      | 料                                    | 米  | 源    | V P  | V <sub>p</sub> | Vs   | V <sub>s</sub> | V <sub>p n</sub> | 备      |           | 注 |
|--------|--------------------------------------|----|------|------|----------------|------|----------------|------------------|--------|-----------|---|
| 文 献(2) |                                      | 爆破 | 5.91 | -    | 3.50           |      | 8.02           | 西                | 安爆     | 破         |   |
|        | //////////////////////////////////// | 地震 |      | 6.09 |                | 3.56 | 8.17           | 陕、甘、             | 宁、青60岁 | <b>大地</b> |   |
| 本      |                                      |    | 文    | 5.89 | 6.17           |      | 3.58           | 8.08             |        |           |   |

我中速度的单位为公里/秒

裹 2

| 资料来源    | 地区           | 方            | 法         | <b>H(公里)</b> | 备           | 注                   |
|---------|--------------|--------------|-----------|--------------|-------------|---------------------|
| ÷++)(9) | 甘肃与青海、宁夏部份地区 | 地震首波、        | 反射波       | 52           |             |                     |
| 又歐之     | 陕西南部         | 工业点          | 酸         | 41           |             |                     |
| 文献(1)   | 西安・兰州・成都三角区  | 远震瑞          | 利波        | 48           |             |                     |
| * *     | 甘肃东部         | 工业/想<br>首波、5 | 暴破<br>乏射波 | 48.8         | 在文献(1<br>的地 | <del>)</del><br>区之内 |
| 4 X     | 青海东部         | "            |           | 57.5         |             |                     |
| 文献(8)   | 柴达木东盆地       | 人工地震         | 反射波       | 52           |             |                     |

1)由表 I 可以看出,这次爆破与西安爆破求得的 V p 和 V p 值较接近。 V p 和 V p 值 与 文献(2)中由地震资料求出的相应值有较大差别。但据文献\*,文献(2)中的 V p 和 V s 值 是 由 60次地震资料算出的,其中50次地震的震源深度h≤30公里,理应低于6.17公里/秒。文 献\*

• 张诚筠《甘肃省及邻近地区的地壳厚度》国家地震局兰州地震研究所(油印本)

中曾给出平均P波速度与深度的关系。

当h=50公里时, $\overline{V}_{p}$ =6.26公里/秒,高于 $\overline{V}_{p}$ =6.17公里/秒。

2)由表 I 可知, 青海、甘肃、陕西三省的地壳厚度有明显的递减趋势, 这也 可 由 图 3 中反射波走时曲线附近的资料点分布看出:处于西部的 5、 6、 7、12、26和28号 台站P<sub>11</sub> 波走时值都在走时曲线之上, 而东部的13、15、18和22号台站的走时都在走时曲线之下。地 亮东薄西厚的趋势,还可以通过下述方法来验证。

假定地壳底面基本为一平面,利用实测的P11走时寻找爆破点的镜像点,则爆破点与镜 象点连线的中垂线就是地壳平面在铅直平面上的投影。图4就是根据此次爆破的P11资料得 到的结果,可以看出莫霍界面明显西倾,这与前述结果一致。



图4 地壳厚度变化趋势

地壳厚度由东至西逐渐增厚的趋势支持文献<sup>(4)</sup>中关于该区地壳已达到 重 力均衡状态的 结论。

3)甘肃河西地区嘉峪关、肃南、高台、山丹和河西堡的P<sub>a</sub>波 走 时 与图 3 的P<sub>a</sub>波走时曲 线没有明显的偏离,这可能说明,由爆破点至上述台站路径的平均地壳厚度与甘肃东部的平 均地壳厚度无多大差别。

最后应说明的是,对于∆<200公里台站初至波的性质,还有待进一步探讨。它可能是 地壳表层结晶基底的首波或地壳浅层的回折波。由于资料不足,难以确证。本文按直达波处 理,对其他结果和所做的讨论影响不大。

利用爆破了解地壳结构是很有效的。由于这次爆破前准备不足,台站布局不够合理,时 间服务精度不高,因此,所得结果不多,所做的讨论也是很初步的。

第一卷 第四期

Ł

A,

|       |      |       |                |                 |        |                 |        |      | 附表         |
|-------|------|-------|----------------|-----------------|--------|-----------------|--------|------|------------|
| 。序    | 台站夕称 |       | 震              | 相到              | 」 时(   | 秒)              |        | 震中距  | Ar         |
| 号     |      | P     | P <sub>n</sub> | P <sub>11</sub> | s      | S <sub>11</sub> | i      | (公里) | <b>宿</b> 仕 |
| 1     | 峡 口  | 2.1   |                |                 |        |                 |        | 5.05 |            |
| 2     | 王佛寺  | 4.6   |                |                 |        |                 |        | 19.6 | }          |
| 3     | 西宁   | 18.4  |                |                 | 26.2   |                 |        | 62.7 | *          |
| 4     | 刘家峡  | 17.2  |                | 22.3            |        |                 |        | 82.0 | *          |
| 5     | 临夏   | 20.4  |                | 26.7            | 34.1   | 44.7            | ·      | 116  |            |
| 6     | 盐池   | 22.1  |                | 28.9            | 34.9   | 47.1            |        | 128  |            |
| 7     | 兰州   | 24.5  |                | 29.2            | 41.2   | 48.2            |        | 130  |            |
| 8     | 九条岭  | 29.7  |                | 34.2            | 50.1   | 58.2            |        | 167  |            |
| · 9 · | 景泰   | 31.4  |                | 34.3.           | 51.1   | 57.3            |        | 178  |            |
| 10    | 河西堡  | 40.3  | 39.3.          | 41.4            | · 65.3 | 69.9            |        | 225  |            |
| 11    | 靖远   | 40.1  |                |                 | 68.3   | 69.0            |        | 226  |            |
| 12    | 岷县   | • • • | 44.5           | 46.9            |        | 80.7            |        | 264  |            |
| 13    | 陇西   |       | 44.3           | 46.4            |        | 79.0            |        | 268  |            |
| 14    | 山丹   |       | 47.6           | 50.5            |        | 87.4            |        | 293  |            |
| 15 .  | 通渭   |       | 48.0           | 50.3            |        | 86.2            |        | 294  | ł          |
| 16.   | 大武   | 3     | 48.1           | 50.8            |        | 86.5            |        | 287  |            |
| 17    | 静宁   |       | 51.3           | 54.6            |        | 91.8            |        | 324  |            |
| 18    | 甘谷   |       | 51.9           | 55.5            |        | 94.9            | . 53.9 | 325  |            |
| 19.   | 礼县   |       | 55.2           | 60.3            | cr.    | 103.7           | 56.3   | 353  |            |
| 20    | 马 兰  |       | 57.5           | 61.9            |        | 105.3           |        | 358  |            |
| 21    | 肃 南  | · · · | 57.9           |                 |        |                 |        | 366  | · ·        |
| 22    | 天水   |       | 58.4           | 64.4            |        | 110.4           | 59.9   | 385  |            |
| 23    | 平凉   | ļ     | 61.7           |                 |        |                 |        | 402  |            |
| 24    | 高台   |       | 61.3           | 68.1            |        |                 |        | 406  |            |
| 25    | 香日德  |       | 63.4           | 70.5            |        | 121.0           |        | 403  |            |
| 26    | 武 都  | 1     | 62.5           | 70.9            |        | 120.7           |        | 413  |            |
| 27    | 玛 多  |       | 65.2           |                 |        |                 |        | 414  |            |
| 28    | 成县   |       | 64.0           | 72.9            |        | 124.4           |        | 426  | 1          |
| 29    | 文 县  |       | 66.1           |                 |        |                 |        | 436  |            |
| 30    | 嘉峪关  |       | 77.0           | 89.5            |        |                 |        | 527  |            |
| 31    | 定西   | 38.9  |                | 40.1            | 67.4   |                 | 71.4   | 221  |            |

附表说明: \*因数据偏差太大舍弃不用, 计算各种数据所用台站:

T<sub>o</sub>、 VF: 1、2、5、6、7、8、9,  $\overline{V}_{p}$ 、H<sub>1</sub>: 5、6、7、12、13、 15、18、19、22、26、28;  $\overline{V}_{s}$ 、H<sub>2</sub>: 同H<sub>1</sub>; V<sub>pn</sub>, H<sub>3</sub>: 12、13、15、18、19、22、26、28、29; 青海地壳厚度 H: 16、20、25、27。

81

西北地震学报

## 参考文献

1. 曾融生等《我国境内瑞利波的相速度》 地球物理学报 1963, Vo12, № 2

2.张诚等《甘肃及邻近地区的地壳厚度》 西北地震学报 1979, Vol, № 2

3. 滕言文等《柴达木东盆地的深层地震反射波和地壳构造》 地球物理学报 1974. Vo17 № 2

4.曾融生《莫霍界面的重力补偿和地壳结构的基本模式》 地球物理学报 1973 Vo16

(上接第28页)

JSZ-2型自动测氡仪具有下述一些特点:直观性好(水氡脱气过程全可看见,若出现 不正常现象可及时发现排除);灵敏度高(氡射气进入闪烁室在动态平衡下,若水中氡浓度 变化,数分钟内计数值即有反应);准确可靠(消除了人工单点取样观测引入的各种主客观 误差,外界条件干扰因素相对减小。脱气稳定,能反应水氡连续变化,观测数据资料质量保 证);操作简便(仪器掌握容易,安装调节方便,脱气装置用水量小,经校正好后,无需再行调 节,不要人员日夜值班);抗腐蚀(玻璃比金属化学性能稳定);易清洗(喷水口,脱气咀不 易堵塞,若有沉积物垢,用稀盐酸即可除去),成本低(全套玻璃脱气装置用费 500 元)。 另外还可进行有线传输。若将玻璃脱气装置配FD-125型仪亦可进行半自动化连续观测,利于 普及推广。基本上能满足当前水氡观测和予报地震的要求。但也有一定局限,如玻璃脱气装 置怕震易碎,全套仪器体积大搬运不便。现场观测要求工作条件较多(需在井泉点修建观测 室,要~220交流供电,要有2米以上水头等)。用于热水观测少。所有这些都需今后革新 完善,将自动连续测氡仪向小型轻便;交直流两用,有线传输,无人遥控研制发展,使之更 加适应任何地震现场和野外流动水氡观测,为早日实现地震予报做出贡献。

(上接第43页)

(〔2〕至〔5〕为国家地震局测量大队资料)

- 〔6〕陕甘宁地区垂直形变图及说明书
- 〔7〕甘肃东部地壳形变现状与地震趋势意见

〔8〕关中东部地形变概况和地震趋势意见

〔9〕陕甘宁部分地区形变测量结果及地震趋势意见

(〔6〕至〔9〕为国家地震局第二测量大队资料)

〔10〕从水平力和垂直力的相互作用讨论我国境内地震的杂音和发生

郭增建等《地球物理学报》

1977.4

(1977.12)

(1976.12)

(1977, 1)

[11]关于大地形变和力之间的关系 努尔(英) 《国外地震》(1976.6、1977.2)