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ABSTRACT

A complete spectrum of Lyapunov exponents (LEs) is obtained from 1970— 1985 daily mean pressure
measurements at Shanghai by means of a correlation matrix analysis technique and it is found that there exist LEs >0,
and <0. with their sum <zero ()’ 4,<0). thus showing the evolution of the climate~weather system represented by the
series to be chaotic.

The sum of positive LE is known to represent the bodily divergence of the system and the sum of these positive LEs

is theoretically found to be Kolmogorov entropy of the system. This paper shows that with the time lag =35, the
parameter m=2 and the dimensionality d,,=9, the sum of the positive LEs Y, 4,=K=0.110405 whereupon

>0
T=1. K=9is obtained as the predictable time scale, a result close to that acquired by the dynamic—statistical approach

in early days and aiso in agreement with that present by the authors themsetves(1991).
Key words: spectrum of Lyapunov exponents, chaotic time series, daily mean pressure
[. INTRODUCTION

An attractor is found to be in phase space in the evolution of a short—term climate system
based on 1870—1980 monthly mean temperature series at Shanghai and Guangzhou in terms of
phase space continuation and the attractor is of fractional dimensionality, indicating that the
evolution is chaotic in nature(Yan et al., 1991). Also, they showed that the attractor in the relat-
ed phase is of fractional dimensionality and the acquired Kolmogorov entropy is positive in the
1970— 1985 series of daily mean pressure for Shanghai employed in the investigation of
short—term weather change(Yan et al., 1991), thereby indicating that the evolution of the
short—range weather system embodied by the series is a motion of chaotic nature.

An attractor of fractional dimensionality formed in the phase space of a chaotic motion is
referred to as a strange attractor. One important aspect in the study of a chaotic motion is to
explore the geometric properties of expansion and contraction in a given direction of the phase
space of the system, and the physical quantity describing such properties is the Lyapunov expo-
nents (LEs). which are the long—term mean of the expansion or contraction around the orbit in
a given direction. For the direction with LE <0, the phase volume is contracted, leading to a
steady orbit of the motion, insensitive to initial conditions. For a dissipative system the phase
space is contractive, on the whole, so that the sum of the LEs should be <0. On the other hand,
the system experiences continuous expansion in the direction with LE >0 such that two state
points getting closer will. be increasingly apart, or unrelated, which will lead to the
unpredictability of the long—term evolution ahead. For a strange attractor at least one of the
LEs should be positive and for LE =0 the related initial error is neither amplified nor lessenied.
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From recent contributions on the extraction of LE out of one—dimensional(1D) time series
one can see that there are dominantly two schemes in use. One scheme was presented by
Wolf(1985) in which LE is obtained by calculating the growth rate of area and volume in an ex-
tended phase space. However, this technique, albeit simple, is able only to find non—negative LE
and generally one or two exponents alone and hence it is impossible to get a complete LE spec-
trum. The other scheme (Sano and Sawada, 1988) consists of correlation matrix analysis, with
which an entire LE spectrum can be obtained from a 1D time series. Eckmann(1986) reported
encouraging result in his investigation of a complete LE spectrum of the Lorenz attractor by use
this procedure. Here, we propose an entire LE spectrum based on the 1970—1985 series of daily
mean pressure of Shanghai for the behavior of a weather attractor in phase space.

II. EXTRACTION OF LE SPECTRUM FROM THE TIME SERIES

For a dynamic system in a d—dimensional phase space we assume the equation for its evolu-
tion to be in the form

x = F(x) . (1)

The tangential vector in the x(t) tangential space is set to be £, whole evolution can be expressed
by linearizing (1), which taken on the form

&= T , (2)
where T=0aF / ax is the Jacobin matrix of F, and for the solution of (2) we may have
E(r)=A4"&0) , (3)

where 4' is the linear operator for the evolution of the tangential vector from &(0) to £(¢).

Thus, the divergence of the mean LEs of the vector is defined as

A(x(0),5(0)) - lim lnl 50) (4)

The vector has its modes denoted by . Assuming £(0) to have {ei }as its base in the
d—dimensional phase space, we have 4 (x(0)) = A(x(0),e;) as the evaluations of 4 on this base
with their order as A, >4, >4, >>++->>1, that constitute a characteristic LE spectrum.

Let {x;}(i=1, 2, ...N) be the time series of actual measurements and /At be the sampling in-
terval, i.e., x;= x[t;+(i—1)/\f], whereupon a d—dimensional phase space is constructed with the
aid of a continuation technique. With t as time lag, we have a new sequence as follows:

x(to), x(tl), x(t:), x([N)
x(1, -!-r), x(t, +71), x(t, +1), o x(t, +7)

xX(t, +(d, — 1)), x(t, +(d, — D), = x(r, +(d, — )1)

where each of the columns represents a point in the d;—dimensional space and all the points
constitute an orbit in the phase space. With a point x; on the orbit as the center and r as the
radius for a ball we have the set of points inside it in the form S;= {x }(=1,2,3,..., n), leading to

|xj—xi|<r. (6)
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For convenience,
(@=12,ed, — 1) (7

X, — X, = max X e T Xy
[T

is employed in place of the distance in the Euclidean space. The set of points is obviously related
to the evaluated r.

After a unit time elapsed when x; becomes x;,,, the related {x;} is evolved into {x;,,}. Since
LEs are used to investigate the averaged expansion / contraction rate with respect to a small de-
viation initially for the orbit, it is possible to create a linear operator to describe the time—va-
rying deviation. For a dz—order matrix 4; the relation of the initial distance x;—x; to the dis-
tance of x;,,—X;,; after a unit time is assumed to satisfy

Xj T X, ¥4 X ~X;), ®)

where A4, is the approximate value of 4" in (3).
x;—x; does not necessarily occupy the whole of the R? space. For instance, a 4-D phase
space holds 3—D Lorenz system. For this reason, it is possible to reduce the size of

dimensionality of 4, and we assume an integer m (m_>>1) to satisfy
d,—1=md, —1), ©)

where d,,<Cdy is available with d,, as the matrix dimension.
With such transformation, corresponding to the vector x; for the d; dimension in the

form x;, X415 «..0X _, » the vector for the d;, dimension takes the form
E

i+d

Yi =(xl’xi+m""’xi+(dM7l)m) (10)

and the form of the vector relative to (8) for the d;—dimension has the expression
Yier ~Vie =AY, —Y,)
for the d,,—dimension, which is obviously equivalent to
X,y m ~ X A, —X)). an
It is worth noting that, based on (10) and (11), 4, should be in the form
o 1 0 .. 0

0 0 1 .. O
I I (12)

a a [ /4
1 2 d,,

-

where g, is obtained in virtue of the following expression by means of the least squares fit, viz.,
dy —1 2
Z { Z ak+ ! (xj+km - xi+km) - (x1+de B xi+de)} = min. (13)
jCSI k=0

From (12)—(13) a series of matrices can be obtained as A4, 4;,,, Ay, Which are now
renumbered as A, 4., Ajs2m""
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We assume Q, to be an orthogonal matrix in which Q, is a unit matrix and R, an up-
per triangle matrix with positive elements on the diagonal. With the orthogonal decomposition
of Schmi(Luan, 1984), we have

4,06 =QuRy >
A1+mQ(1) =Q(2)R(2)’
(14)
~Al+ij(j) =Qq+1)R(,+|) :
Thus LE 2, takes the form .
A =mAtK};1nRV""" s (15)

where K is the number of the R;, matrices with K= (N—dym—1)/ m, A\t the sampling inter-
val, m the integer values in (9) and R, 4 the elements on the major diagonal of the matrix
R

)

III. CALCULATIONS

The sample used in this work is taken from the Data Compilation published by Central
Meteorological Bureau, PRC(1970—1985) and has the length N = 5000 and /\¢=1 day.

As noted in Yan et al.(1991), with time lag =35, the extended phase space has its
coordinate components independent of each other so that the system’s dynamic characteristic
values obtained are stable, indicating that the related dimensionality ranges from 7.7 to 7.9 for
the series. Therefore, a proper dy, is taken over the range of 6, 7, ..., 13 in the present work.

It is important to evaluate r in (6). Thus, we adjust r in a sphere
{rmin<|xj - X, |< r} so that any sphere centered at x; contains the number of neighboring
points N in the range 20 <N <50. m is a positive integer taken as 2, 3, and 4 in calculation.

Before computation we perform smoothing of the raw data to reduce the noise. The data
series treated that way is put into calculation, separately, in terms of (5) through (15), with the
results illustrated below.

(1) For the phase space extended by t=35 the matrix dimensionality d,, bears the relation
to the Lyapunov exponent 4; with different m, as shown in Fig.1.

Table 1. LE Spectrum witht=5,m=2and d,,=9

A4 LE magnitude Sign A LE magnitude Sign
A " 0.096305 T | A ~0.067100 -
A 0.014100 + | 4 © —0.095120 -
IR ~0.000195 0 | A ~0.165408 -
i, —0.034436 - | 4 —0.340828 -
1 ~0.053214 -

Y 2,=-0.645701 <0 Y 4, =0.110405

i >0
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Fig.1. Relation between d,, and 4 with =35 for
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Fig.2. Relation between d,, and 4; for t=3 and Fig.3.  Relation between d,, and A; with t=5, m=2
m=3. and S<N<15.

It is clear from Fig.1 that for the different d,,, the number of A, varies, and from Fig.la
that the LEs’ values become steady after d),=9. Table 1 presents the LEs for t=35, m=2 and
dy=9.

(2) As portrayed in Fig.2, the LE spectrum has unstable nature in the phase space extended
by =3, which is caused, as indicated in Wolf(1985), by the dependence of the coordinate com-
ponents on each other in such a space and thus the characteristic values obtained of the dynamic
system are variable.
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Fig.4. Relation of d); to A, with =5, m=2 and noise retained.

(3) If the sphere centered at x; contains too few neighboring points to meet the needs of
statistical averaging, then the LEs are variable in magnitude. Fig.3 delineates the number of
neighboring points 5 < N< 15 inside a sphere for 7=5 and m=2.

(4) Fig.4 illustrates the LE spectrum for =5 and m=2 based on the raw data
(unsmoothed).

Comparison of Fig.4 to Fig.la indicates that the smoothing is of help because the noise in
the series can give rise to the instability of the LEs’ values.

V. CONCLUSIONS

In view of the fact that Shanghai and its surroundings are marked climatically by tens of
cyclones attending, control of the subtropical high lasting 30—50 days in summer and autumn
and 3 to 5 processes related to tropical cyclones each year, we make use of the daily mean pres-
sure dataset over 1970—1985 there, during which were recorded 3 warm and 7 severe winters,
and 5 cool and 4 scorching summers. For the complex weather—climate system composed of so
many weather processes it is necessary to first improve our understanding of its development on
the whole in the dynamic research. Evidently, the extraction of the LE spectrum out of a time
series is a useful approach. From the calculations discussed above we come to the following
conclusions.

(1) A complete LE spectrum in the extended phase space is presented based on the
Shanghai pressure series for 1970—1985 in terms of the correlation matrix analysis method, and
shows that LEs can be larger or smaller than, or equal to zero. For a dissipative system the sum
of the LEs (3 4;) is known to be <0, indicating that its phase volume is contractive in the evolu-
tion. The presence of positive LE in our study shows the short—term evolution of the
weather—climate system to be chaotic, a result identical with that of Yan et al. (1991), which
provides a new field of vision on the background of the evolution of the weather—climate system
in the subtropical humid climate.

(2) The LE spectrum obtained from the phase space extended by 1=135 is quite stable. As
shown by Yan et al.(1991), this is the case where the coordinate components are independent of
each other in the space, leading to stable characteristic values of the system. The optimum LE
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spectrum is obtained with m=2 in the 7=5 phase space. We have d,=2(d,—1) from (9) with
m=2. This is close to the relation of the integer for the related dimensionality to be closest to the
saturation insert dimension, as shown in Table 1 of Yan et al.(1991).

(3) Table 1 gives LE values of a complete spectrum, indicating two positive, one zero and
six negative values, with the sum of the positive ( ). 4,) being 0.110405 for the bodily dilatation

i >0
.

of the system, in agreement with the Kolmogorov entropy K obtained. Therefore, their relation
(Rulle, 1983) is K = Y 4, =0.110405. The inverse of K is T=1/ K, a measure for estimating
the predictable time scale of the system, and T=9 days has been found out in our present
study. an outcome quite close to that obtained by the dynamic—statistical technique and to the
entropy directly extracted from the series used (Yan et al.,1991).

(4) LE is the quantity to describe the rate of the occurrence or disintegration of indefinite
factors of the system. The initial undeterminancy depends on the maximum LE (4,,,) for its rate
in covering the whole attractor and so does the time when the perturbation of the attractor is on
the verge of disappearance on A;,. It is clear from Fig.1 that 4., and A.;, are kept unchanged
although the number of LEs increases with growing d,, at it>9, showing that the values of our
LE spectrum are reliable.

It 1s encouraging that we get similar results from the same sample used both in Yan et al.
and this article, indicating the usefulness of the methods we apply. In the former case the related
dimension and Kolmogorov entropy are found out by a direct computation while in the latter
the LE spectrum is extracted directly from the series by means of the correlation matrix analysis.
More important, the short—term weather evolution over the area of Shanghai is really of chaotic
nature.

Fractional dimension, LE spectrum and Kolmogorov entropy are central quantities in the
study of chaotic motions. A chaotic motion is shown as a strange attractor which is a set of lim-
its of low—dimensional phase space so that a definite differential equation of a limited number
of variables can be used to make a forecast over a mean period with respect to the weather sys-
tem evolution of this sort. Since a chaotic motion is sensitive to initial conditions such forecasts
must be confined within a certain scale of time. For those beyond the limit a procedure of statis-
tical analysis has to be applied.
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