ON THE RELATIONSHIP BETWEEN STRONG EARTHQUAKES AND THE MOVEMENT OF INDIAN PLATE NORTHWARD IN THE SWAYING WAY

Zhang Zhitao

(Xi'an Institute of Geology and Mineral Resources, Shaanxi, China)

Abstract

With the movement of Indian plate northward in the swaying way, a pair of rotational shear belts formed in front of Pamir arc and Asam arc, which are two projecting points of Indian plate. And M≥7 strong earthquakes occur alternately from one belt to another in period of every 90 years.

After a swaying movement, due to the elastic reaction of Himalayan arc, a moderate strong earthquake zone causally formed in the middle of Qinghai-Xizang plateau adjacent to 90°E, at the both sides of the vertical line to Himalayan arc.

震前固体潮峰谷位移异常

地壳运动有多种形式,固体潮是唯一能事先精确计算出的物理量。平静期观测值与理论值曲线形态基本上是吻合的,潮汐波的峰谷出现时间大体对应。由于地震孕育的影响,使观测值的峰谷出现时间较理论值提前或滞后而出现异常。据我们的初步研究,1983年11月7日荷泽5.9级地震前,距震中190公里的泰安台倾斜固体潮峰谷位移出现5个月的异常,与M。波潮沙因子异常时间符合较好,1984年1月6日九条岭5.5级地震前,距震中270公里的兰州台重力固体潮震前峰谷位移异常持续5个月,比M2波潮汐因子异常提前1个月出现,1988年1月4日灵武5.4级地震前,距震中300公里的兰州台自记长水管倾斜仪峰谷位移异常持续3个月,1990年4月26日共和6.9级地震前,距震中300公里的兰州台自记长水管倾斜仪峰谷位移异常持续3个月,1990年4月26日共和6.9级地震前,距震中300公里的兰州台自记长水管倾斜仪峰谷位移异常持续3个月。用常规分析法如形态法、差分法等分析无异常显示,而用峰谷位移异常法分析异常明显,且有一定的量级。初步研究认为,分析高精度的倾斜固体潮和重力固体潮观测资料,峰谷位移异常分析法是一种较好的方法。

(国家地震局兰州地震研究所 刘光远)