首页 | 官方网站   微博 | 高级检索  
     

温室气体对亚洲夏季风影响的数值研究
引用本文:彭艳玉,刘煜,缪育聪.温室气体对亚洲夏季风影响的数值研究[J].应用气象学报,2021,32(2):245-256.
作者姓名:彭艳玉  刘煜  缪育聪
作者单位:1).中国气象科学研究院灾害天气国家重点实验室, 北京 100081
摘    要:利用NCEP/NCAR再分析资料检验全球气候模式CAM5.1模拟亚洲夏季风的能力,CAM5.1模式能够较好再现亚洲夏季风的基本特征。通过工业革命前(1850年)、工业革命后(2000年)温室气体排放情景的敏感性试验探讨近现代温室气体增加对亚洲夏季风的影响机制。结果显示:温室气体增加导致亚洲大部分区域地面气温增加,印度半岛中部、中南半岛和中国东部地区夏季风增强,印度半岛中部及北部、中南半岛中北部和中国东部地区夏季降水增加。分析大气能量收支和转换发现,温室气体增加通过增强大气对流凝结潜热释放的方式加强大气热源;夏季陆地为暖区,不均匀加热引起全位能增加,从而增强全位能向辐散风动能的转换和辐散风动能向无辐散风动能的转换,最终导致这些区域夏季风增强。其中,对流凝结潜热增加是温室气体增加造成大气稳定度降低、对流活动加强、对流云厚度加大、对流降水增加的结果;同时,对流降水增加是总降水增加的主要原因。

关 键 词:温室气体    亚洲夏季风    不均匀加热    全位能
收稿时间:2020-11-05

A Numerical Study on Impacts of Greenhouse Gases on Asian Summer Monsoon
Affiliation:1).State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 1000812).Key Laboratory of Atmospheric Chemistry of CMA, Beijing 100081
Abstract:The concentration of greenhouse gases in the atmosphere has increased continuously since industrial revolution and significantly impacted the global climate, of which global warming is the most direct and prominent manifestation. The Community Atmosphere Model V5.1 (CAM5.1) is examined and used to simulate multiple meteorological elements of Asian summer monsoon using the reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research), and the results show that it could reproduce the main features of Asian summer monsoon well. Sensitivity experiments are then carried out to study the response mechanism of Asian summer monsoon to greenhouse gas increase in terms of energy transformation, which adopt greenhouse gases emission scenarios of 2000 and 1850 respectively. The models are run for 20 years from 1991 to 2010, and the results of the latter 10 years in summer (June to August) are analyzed.With increasing greenhouse gases concentration, the surface air temperature in the Asian continent is mostly increasing, except for the Arabian Peninsula and northwestern Indian Peninsula. The monsoon is strengthened in central Indian Peninsula, Indo-China Peninsula and eastern China. In addition, monsoon precipitation increases in the central and northern Indian Peninsula, northern and central Indo-China Peninsula, and eastern China, while decreases in southern Indian Peninsula, southern Tibetan plateau, central and western China, the Philippines and Japan. Correlation analysis of atmospheric energy budget and conversion shows that increased greenhouse gases concentration enhances the atmospheric heat sources by means of increasing the convective condensational latent heat. The increase in atmospheric heat sources results in an increase of full potential energy. Thus, there are positive transformations of full potential energy to kinetic energy of divergent wind, and the transformation of kinetic energy from divergent wind to non-divergent wind also increases, which ultimately enhances the summer monsoon over central Indian Peninsula, Indo-China Peninsula and eastern China. Further analysis shows that the increase of convective condensational latent heat is the result of the decrease of atmospheric stability, the enhancement of convective activity, the increase of cloud thickness and the increase of convective precipitation caused by the increase of greenhouse gases concentration. Meanwhile, the increase of convective precipitation is the main cause for the increase of total precipitation.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号