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ABSTRACT

In this paper, two formulation theorems of time-difference fidelity schemes for general
quadratic and cubic physical conservation laws are respectively constructed and proved. with earlier
major conserving time-discretized schemes given as special cases. These two theorems can provide
new mathematical basis for solving basic formulation problems of more types of conservative time-
discrete fidelity schemes. and even for formulating conservative temporal-spatial discrete fidelity
schemes by combining existing instantly conserving space-discretized schemes. Besides. the two
theorems can also solve two large categories of problems about linear and nonlinear computational
instability.

The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic
primitive equations is currently used in many countries in the world for operational weather
forecast and numerical simulations of general circulation. The present work, however, based on
Theorem 2 formulated in this paper. develops and realizes a high-order total energy conserving
semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of
baroclinic primitive equations. Prior to this, such a basic formulation problem remains unsolved for
long, whether in terms of theory or practice. The total energy conserving semi-implicit scheme
formulated here is applicable to real data long-term numerical integration.

The experiment of thirteen FGGE data 30-day numerical integration indicates that the new
type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic
deviation of energy and mass conserving of the traditional scheme. It should be particuiarly noted
that, under the experiment conditions of the present work, the systematic errors induced by the
violation of physical laws of conservation in the time-discretized process regarding the traditional
scheme designs (called type Z errors for short) can contribute up to one-third of the total
systematic root-mean-square (RMS) error at the end of second week of the integration and exceed
one half of the total amount four weeks afterwards. In contrast, by realizing a total energy
conserving semi-implicit fidelity scheme and thereby eliminating corresponding type Z errors,
roughly an average of one-fourth of the RMS errors in the traditional forecast cases can be reduced
at the end of second week of the integration, and averagely more than one-third reduced at integral
time of four weeks afterwards. In addition, experiment results also reveal that, in a sense, the

effects of type Z errors are no less great than that of the real topographic forcing of the model. The
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prospects of the new type of total energy conserving fidelity schemes are very encouraging.

Key words: global spectral model for baroclinic primitive equations, total energy conserving
semi-implicit fidelity scheme, type Z systematic errors, physical conservation laws,

medium-range numerical prediction

I. INTRODUCTION

Physical laws of conservation of energy., mass and so on are fundamental laws in
natural world. It is a basic requirement of a well-reasoned and reliable discretized
computation to retain the characteristics of physical conservation laws of its original
continuous system. The satisfying of such a requirement is still more important for long-
term numerical integration. Apparently., even though the sources or sinks of
corresponding systematic errors are not large or exceedingly small in terms of quantity,
their long-term negative accumulative effects can not be overlooked. Except in special
cases nonlinear problems have no analytical solutions. We can only derive solution by way
of discrete numerical computations. Consequently, the basic problems of this type are
normally unavoidable.

Computational stability and convergence are essential questions of numerical
computations. For linear (rized) modeling, computational stability and convergence can be
ensured by setting up a corresponding compatible discretized computational scheme that
satisfies universal linear computational stability criterion, But for nonlinear modeling,
general criteria or methods guaranteeing nonlinear computational stability are still lacking.
Nor is there any equivalent theorem of stability and convergence available. How to
formulate a scheme capable of reasonably preventing nonlinear computational instability
and ensuring nonlinear convergence remains an essential theoretical question at which
researchers of computational mathematics and physics. including those in other numerical
computational fields, have long worked. And yet, for evolution problem involving some
types of physical conservation laws, some square or weight square conservation laws for
instance, formulating a discretized scheme capable of retaining corresponding conserving
integral property itself would also mean the solving of its problems of linear and nonlinear
computational instability.

Studies on the formulation of conserving schemes can be traced back to early this
century (Galerkin et al. 1915). Although some instantly conserving schemes (ensuring
conservation in space only and not in time) have been successfully formulated in the world
(Arakawa 1966; Arakawa and Lamb 1977; Arakawa and Lamb 1981; Bryan 1966; Corby
et al. 1972; Grammeltvedt 1969: Grimmer and Shaw 1967; Lilly 1965; Sadourny 1972;
Simmons and Burridge 1981; Williamson 1970), yet, because of various reasons, except
in the trivial first-order conserving schemes and some other very special cases. the basic
formulation problem of conserving schemes in temporal-spatial discrete sense remains
unsolved for long. The toughest aspect has been the construction of time discretized
conserving schemes. In the recent past, with regard to a certain special operator equation,
(instantly linearized) implicit and explicit time-difference scheme preserving a specified
square conserving property have been successfully constructed (Zeng 1979; Wang and Ji
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1990). The applying of such schemes has also resulted in the formulation and actualization
of square energy conserving temporal-spatial difference (instantly linearized) implicit and
explicit scheme, and a square energy conserving space-Galerkin approximation (instantly
linearized) implicit time-difference scheme for barotropic primitive equations respectively
under a specified transformed expression (Wang and Ji 1990; Zeng and Zhang 1982: Zhang
1982). But it is a pity that such schemes have very rigid applicable conditions. They can
not be employed directly to formulate energy conserving schemes for barotropic or
baroclinic primitive equations in traditional meteorological forms. In fact, it is also
impossible to satisfy the stringent applicable conditions and settle the formulation problem
of high-order total energy conserving time discrete schemes by way of transforming
baroclinic primitive equations. Besides, the equivalent transformed expression of an
equation in continuous sense generally does not possess equivalence after being discretized.
Recently the author of this paper has formulated and proved two theorems for square
conserving semi-implicit time-difference schemes (Zhong 1992a; Zhong 1992b). Because
of the special designs involved. the theorems can be employed in the case of semi-implicit,
explicit, and (instantly linearized) implicit time-difference schemes as well as in solving
formulation problems of the specified square conservative property regarding the special
operator equation mentioned above and non-specified square conservative properties of
non-special operator equations. The new formulation theorems (Zhong 1992c; Zhong
1993) for weight square conserving scheme and square conserving scheme formulated and
proved by the author at a later time can set the former theorems (Wang and Ji 1990;
Zhong 1992a; Zhong 1992b) as their special cases. The applying of these theorems to
corresponding meteorological models has also led to the formulation and actualization of
time difference-spatial spectral expansion enstrophy square conserving explicit scheme and
square kinetic conserving explicit scheme for barotropic vorticity equations which
respectively belongs and does not belong to the specified square conservative property of
the special operator equations (Zhong 1992b: Zhong 1995a: Zhong 1995b). Also
formulated and actualized is a time difference-spatial spectral expansion weight square
energy conserving semi-implicit scheme for barotropic primitive equations (Zhong 1995a).
Based on the general principles and methods established in the shaping of the above-
mentioned theorems (Zhong 1992c: Zhong 1993), a time difference-spatial spectral
expansion enstrophy and angular momentum conserving semi-implicit scheme for
barotropic primitive equations have been respectively formulated and realized (Zhong
1993; Zhong 1995b). These theorems (Zhong 1992a; Zhong 1992b: Zhong 1992c: Zhong
1993). however, are not workable either for solving the formulation problem of high-
order total energy conserving time difference scheme for baroclinic primitive equations. A
basic aim of the present work is to resolve two extensive types of formulation problems
_pertinent to high-order conserving time difference fidelity schemes and in particular
provide appropriate formulation theorem for constructing high-order total energy
conserving (semi-implicit) time-difference scheme for baroclinic primitive equations.
Numerical weather predictions are. without doubt, of tremendous social and economic
value. Ever since 1950s when the first and earliest successful numerical weather
forecasting was produced in the world (Charney et al. 1950). numerical prediction models
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have undergone dramatic improvements from the relatively simple barotropic vorticity
equation model at the initial stage to the complicated baroclinic primitive equations model
widely used today which approximates more closely the real properties of the atmosphere:
from the initial grid point model in which spatial derivatives possess poor discretized
precision to the widely used spectral model in which spatial derivatives can be discretized
with high precision; from earlier explicit time-difference schemes of which the discrete
computational stability requirements are high but computational efficiency is low to the
semi-implicit time-difference schemes widely used today of which the discrete
computational stability requirements are low and yet computational efficiency is high.
Whatever complexities they involve, all the forecasting models ever used for numerical
weather prediction unexceptionably contain high-order physical conservation laws, hence,
throughout each developmental stage of numerical weather prediction there have been
remarkable efforts devoted to the formulating of corresponding conserving schemes.
Nevertheless, as far as baroclinic primitive equations are concerned, although high-order
total energy conserving vertical {finite-difference schemes have been successfully
constructed in the world for long, the basic formulation problem of high-order total energy
conserving time-difference (discrete) schemes remains unsolved in both theory and
practice. Thus, another primary goal of this paper is to formulate and actualize a high-
order total energy conserving time-difference scheme for baroclinic primitive equations, to
test the feasibility of the total energy conserving semi-implicit scheme for global spectral
model by using FGGE weather data (FGGE: First GARP Global Experiment, 1 Dec. 1978
— 30 Nov. 1979. GARP: Global Atmospheric Research Program), and explore its
potentials for applications.

In the following Section 1I of this paper, two formulation theorems of time-difference
fidelity schemes, capable of retaining the general quadratic and cubic physical conservation
law, will be formulated and proved. A total energy conserving (semi-implicit) time-
difference scheme for global spectral model of baroclinic primitive equations will be
presented in Section III. In Section IV, by using FGGE data, comparison experiment of
thirteen 30-day numerical integrations between a traditional and a new total energy
conserving semi-implicit time-difference scheme for global spectral model of baroclinic
primitive equations will be designed and conducted. Finally, in Section V a summary of

the present work is given.

II. FORMULATION PRINCIPLE AND THEOREMS FOR FIDELITY SCHEME OF HIGH-ORDER
PHYSICAL CONSERVATION LAWS

The operator equation of evolution problem can be
du
37 + Au = 0. @

Based on a general compensation principle and inverse formulation method of a fidelity
scheme (Zhong 1992c; Zhong 1993) that maintains the single or multiple characteristics of
the original continuous system by accordingly and averagely compensating and eliminating
the discrete computational errors at each computational component (grid) in accordance
with the source and manner of the introduction of the errors, a general physical
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conservation law time-difference fidelity scheme of equation (1) can be written as
un+l — w
As

Here, if the auxiliary formulation operator A, is respectively set as a linear (or linearized)

+ (A" — ADw" + Ajutt! 4 Ate'Bu" = 0, @)

part of operator A. zero and A itself then, apparently. scheme (2) is a semi-implicit,

n

explicit or (instantly linearized) implicit scheme respectively; €" is an undetermined
compensation coefficient with single (or multiple) component (s) ; compensation operator
B"u” can be given as
J . .
; 1 ity Ai 3"
= -1 _ —
Bru J;‘A‘ LG DT a7 7951 35+

where €,, as a switch constant, can be set as zero or 1; the derivative of « at any order can

J is positive integer €)

be determined by Eq. (1). In actual computations, the compensation operator B"«" can be
determined by Eq. (3) or its approximations. An appropriate selection of compensation
operator B is very important. The fidelity scheme is universally valid for all the semi-
implicit, explicit or (instantly linearized) implicit algorithm because of the introduction of
the auxiliary formulation operator A, (Zhong 1992c; Zhong 1993).

In particular if operator equation (1) yields general quadratic conserving integral

property
[+ A,8u + 4 - A4000 =0, @
or general cubic conserving integral property
J(A,u e Aju » AyAu + A Au » Aju » Ayu + A« AAu » Ayuwydo = 0, 5
the following theorems are true. Here, A,, A, and A; are all bounded space operators
independent of « and ¢; do is a space integral element.

Theorem 1: Suppose the compensation coefficient € satisfies
2C,

]. + ]. - 4At2C1C3
for any » time, then Scheme (2) is a fidelity scheme with quadratic conserving integral

e = 6

property and is compatible to Eq. (1), where

C, = CJ. (A A" » AyA™w" + A Lu® » A,Mu™ + A,Lu" + AiMu" + At*A Mu" » A,Mu™) do,

C,= CJ (A, KB"w" « A,M,B"w")do,
K, L and M are inverse operator of I + AtA} . I — AtA,and KA7 A" respectively: [ is a unit
operator: C is a reciprocal of J[Al (L + A*Myu » A, KB'w" + A, L. + A*Mhu” -
A, KBu"]do.
Proof: Using Property (4), it can be easily testified that if €" satisfies Eq. (6) then
J(A,u’”“l « Aywtydo = J‘(Alu" + A,u™) do (7a)

is satisfied at any » time, that is, Eq. (2) is now a fidelity scheme with quadratic
conserving integral property. And apparently, from Eg. (6), we can also derive the
following form
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lime* = O (A2%). (7b)

A0
This implies that Eq. (2) is for the moment also compatible to Eq. (1). Q.E.D.

As a special case of Theorem 1. let A, and A, be identical, the fidelity scheme with
quadratic conserving property will retrograde to a square conserving scheme (Zhong
1992c; Zhong 1993). A square conserving scheme is clearly a stable scheme. More
generally. it is evident that any quadratic conserving fidelity scheme with operator A,, A,
and A;ensuring A,u * Aju = |Au *+ A,u| at any point of the entire integral space is a stable
scheme also. The sufficient and necessary condition for their computational stability is

1= 44:2C\C,. 8

As an even more special case, let us further set A, and A, as unit operators, A.as zero
operator, then the general square conserving scheme will retrograde to a square conserving
explicit time-difference scheme (Wang and Ji 1990) regarding a certain special operator A -

satisfying an integral constraint

[0 X, 0, A" X, 00, X.0u(X.t) ] =0, )
and a certain special square conserving property
latt]|2= ||u*]||? for any » time. aom

For still special cases with integral conserving property (10), that is, cases in which not
only Eq. ( 9) but also

@X. 0, Aw" . X, Hu(X.0)) =0, (11a)
are satisfied, we simply let € = 0 and A, = %A, and it follows that Eq. (2) will
retrograde to a natural instantly linearized square conserving implicit scheme as follows

un+l —u" . un+l _|__ u” _
AL +A@, X. 8 2 = 0. (11b)

If we further set A (&, X, 1) as A («", X, t). then a general instant linearized square
conserving implicit scheme (Zeng 1979: Zeng and Zhang 1982; Zhang 1982) can be

obtained as

%_—“"+A<u*,x,t>£z+—“—"=o. (110)
where X is spatial coordinate, t denotes time coordinate, and »* is an arbitrary reference
value of #. A more reasonable choice here is to set u* = @u" + (1 — O u"t', where fis a
weighting factor. In actual computation, #"*! can be substituted by its estimated
approximation.

It may be noted that, Scheme (11c) has very stringent applicable conditions. In fact,
it is a double square conserving scheme. Namely, Scheme (1lc) yields conservation of
la"||2and || A", X, ) || 2for any n time. This implies that, for physical problems that
merely satisfy one of the above-described square conserving properties, it is almost
impossible to obtain desirable effects by using Scheme (11lc). Apparently, under this
condition. because of the presence of a false computational conservation constrains, it is
equivalent to the introduction of a false computational systematic error source or sink into

the scheme.

Substitute the variable «" in operator A of Scheme (11b) with %(u"+1 + «") ., the
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scheme becomes a complete implicit square conserving scheme known as Crank-Nicholson
Scheme.
Theorem 2: Suppose the compensation coefficient € satisfies
ALY, (€)7 4 MY, @+ Ve 4+ Y, = 0, a2
and its order of magnitude is O (Af°), then Scheme (2) is a fidelity scheme with a cubic
conserving integral property and is compatible to Eq. (1), where

7, =JA1LB" "+ A,LB'u" + A,LB"u"do, (13a)

Yy =— J(AILB"u" « A;LB'u" « A,Mu" + A\ LB'w" + A,Mu" « A;LB"u"

+ AMu" » A,LBw" + A;LB"w")do, (13b)
7, =J(A1LB" "o ApMut « A;Mu" + A My« A)LB'w « A;Mu”

+ A Mu" » A,Mu" + A,LB"u™ do, (13¢)
7, =— J(AlKu" s A,A'u » AJAW + A\A™u” - A o AJA™Y

+ A A" » A AW At + A LALA W » A,Mu™ » A,Mu™
+ AKu" « A,Mu « A,LAG AW + AKu' « A, LALAW + A,Kuydo,  (13d)
K=1—MA" M=1— AMA"+ At*LA}A", L is an inverse operator of I + &tA}, Tis a
unit operator. '
Proof: Using Property (5). it is easy to prove that if € satisfies Eq. (12), then

J(Alu"‘H e Ayt e At de = J(Alu" o Au" » Aju™) do (14)

is true at any n time, that is, Eq. (2) is now a fidelity scheme with cubic conserving
integral property. Apparently, in accordance with Eq. (12)., we can derive the following

expression
lime" = lim (— 7,/7;) = O A). (15)

Ar—0 A0

This implies that Eq. (2) is now also compatible to Eq. (1). Q.E.D.

As a special case of Theorem 2, set A, as a bounded positive definite operator, A, and
A; identical bounded operators and all are independent of « and z then the cubic
conserving fidelity scheme is further degenerated into a weight square conserving fidelity
scheme (Zhong 1992b; Zhong 1993). A fidelity scheme with weighted square conserving
integral property is, clearly. an absolutely stable computational scheme.

More generally, it is apparent that any cubic conserving fidelity scheme with
operators A;, A; and A; ensuring Aju * Au » Asu = |Awu » Au » Asu| at any point of the
entire integral space is an absolutely stable computational scheme.

III. THE FORMULATION OF A TOTAL ENERGY CONSERVING SEMI-IMPLICIT TIME-
DIFFERENCE SCHEME FOR GLOBAL SPECTRAL-VERTICAL FINITE-DIFFERENCE
MODEL OF BAROCLINIC PRIMITIVE EQUATIONS

1. Model Control Equation (s)

Set vertical coordinate (Phillips 1957) ¢ = p/p,. where p is pressure, p, surface
pressure. Suppose change of water vapor in model atmosphere is neglected. model
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atmosphere is free of friction and free of heat exchange with the outside world, then the
vorticity, divergence, thermodynamic. continuity and hydrostatic equation under the
horizontal spherical coordinate system may be respectively written as

ag 1 dFv 1 dFu

3t Taa—m ax Taap O e
E:';_D a(li,uz) aaiu_%aaiv+vz[2£(;t—‘/':+¢]= O 4
"
ap,+v @) _*_31?, -0 7(19)

L RT=0 or ¢-—2%9 20

a lna
Using model atmosphere vertical bounded condition ¢ = 0 when ¢=0 and 6=1, integrate

Eq. (14). we can get

a 1
i%—f V e py)de =10 or
at 0

. 1 “
a:af D+ v —I<D+—h-vmda
0 PS 0 ps

al“P’ +J (D + v, » Vinpyds = 0, @D

1 o
= J (D + v, * Vinp) —J D+ v, » Vinp,)do, 22)
0
dl
%=ivh V. — "6L<D+—-vmda
=y, « Vinp, — d(limf (D + v, » Vinp,)do, 23)

where ¢t denotes time, A, § are respectively earth longitude and latitude; y=sinf, u. v are
longitudinal, meridional components of horizontal wind vector v, respectively; u is positive
towards east, v is positive towards north; 7" is absolute temperature, {= V¥ represents

vertical component of relative vorticity, D = V¥ is horizontal divergence. ¢ (= gz)

. . . de. . . . - dp. . .
geopotential height, 0= s o-coordinate vertical velocity, w = 11 p-coordinate vertical

velocity, ¥ stream function, X is velocity potential. z is height, ¥V denotes horizontal
gradient operator, V?denotes horizontal Laplace operator. Furthermore,
dU  RT 9lnp, aU RT ap,

Fu—V(f‘f'C)—a%_T R V(§+f) 30 . aa'\, (24)
o av_RT, _ , alnp,
=~ UG +h —a5, — A= r
- _ 4,9V _RT . ., 3P
UG+ —e5, —-a—m L @25)
_ _ir_ ., ¥  ax
U = ucos = a[ a5 +aA]’ @26)
V = vcosf — l[— +a— ax], @n
a Iy

U,V are scaled zonal and meridional winds respectively, f=2{2sind is Coriolis parameter,
{1 is angular velocity of earth, a is radius of earth, R and ¢, are respectively air censtant
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and specific heat of dry air at constant pressure. It can be verified that the motions
described by baroclinic primitive equations (16 —20) constantly possess cubic high-order

total energy conserving global integral property
1 U? 4+ v?
2. Ds + ¢, T + E(T——:Idads = constant. 28)
[}
S
Here, &5 is surface geopotential height, ds is spherical integral element, S total area of

integral sphere.

2.  The Traditional Semi-Implicit Scheme for Global Spectral-Vertical Finite-Difference
Model

With §&. D, T, lnp, as variable and @ as diagnostic variable, using semi-implicit time
integration scheme (Robert et al. 1972) for divergence, temperature and surface pressure
equation and introducing time filtering (Asselin 1972) to prevent the false growth of
computational mode. the traditional semi-implicit scheme of the global spectral-vertical

finite-difference model for baroclinic primitive equations can be given as

0, Cmis +2ZT, .4 =0, 29
2
8 Dovs+ DT iy + [ (——U +V )+d>]
2 (1 m. ik
_1_
[ . 2+ aRAT, + RTOA,,lnp,jl =0, (30)
j=k+1 ) 7 m. !
anHl/UA
8T s +TT,, —T—ED Ag; + qA,D,] =0, 3D
= m, i
NL ”
8. Anp,) ps + PToi+ D 0D00; = 0, 32)

=1
where X, . is coefficient of spectral expansion with spherical harmonics p7 () e
function for variable X at layer &, operator &, A, are respectively 8§ X = (Xt —X5)/2A¢
and A, X= (X" —X7)/2—X. where X denotes a variable at ¢ time, X represents variable
X at time t+A¢ . X5 represents X at time t— At after time filtering (Asselin 1972). Xis
obtained from X,;=X-+¢,(X; —2X+X") after integrating (29) — (32) one step forward.
Spectral coefficient ZT 14, DT 4. TT w1 at any & layer and PT,, , are derived directly by
grid-point/spectral transform after obtaining the corresponding value of nonlinear terms
ZT, DT, TT and PT at each computational grid point of three-dimension space at present
time ¢. T, represents reference temperature of atmosphere. Here
1 d (Fv), 3 (Fu),

imi

as basis

== e et e (33a)

DT.=—a(1i#2) 9 f;‘"—agfjur VZ[Z—U(it—‘;E)--{-Q], (33b)

TT, = a———(ltf 5 337;‘ + ‘% aaik + @ QI - RZ‘ %)‘, (330

PT = Z s, + Vinp, + D)) b, (33d)
- au 3lnp,

Fuwy, =V &+ H — (&%)A—RTk‘EaT, (33e)



No. 2 FORMU. OF FIDELITY SCHEMES & IMPROVE. ON TRADIT. SPECTR. MODEL 235

3J lnpl
adp’
To represent the vertical variation of all dependent variable, the atmosphere is divided

(F'U)k=—‘U1(Ck+f) - (a'_V)k_RTk(l—#) (33

into NL layers. Variables &, D, T are defined at intermediate integer levels (full levels),
and o is defined at interface levels (the “half levels”) between these layers. Define &% =

&NH% = 0 and other U'HL at half levels as

a,,+_ = oH_Z(D +v,, « Vinp,)Ao;, — Z(D +vh Vinpg)Ao,,

j=1

k—] 2y "9NL—19 (34)
determine @ at full levels and half levels through discretized hydrostatic relations (20)
¢k+ 0'[,+_ - @*_é_dk__
@1 = A + RT;, = ¢k+— + a’kRTk (358)
Ty
o,+1
Pl =&, — RT, i =& + zk;lRT In = ; (35b)

Oy 1 Ol

: z, (35¢)

n
Agy Ol

aq =1 —

take variable X vertical advection at integer layer as

.aX 11/ - Xiv — X, : X — Xio
€3+ = 2\t T der T Az | 36)
X=UV.T,
let vertical velocity w at plane p satisfies
lno‘k+1/0“__
w
(;)k =Wy Ving, — & Dy + Vi, * Vinp) — —A—,Z; D; + Va, * Vlnp,)Ao

37

then it can be verified that the satisfying of (35) — (37) can ensure there is no spurious
energy source or sink due to vertical finite-differencing. If we further set o1=0 thereby
= 1, then the satisfying of (35) — (37) can also ensure there is no spurious angular
momentum source or sink due to vertical differencing (Simmons and Strufing 1981).

The traditional semi-implicit time-difference schemes (29) — (32) involve three time
levels therefore produce a false computational mode. To prevent its false growth, an
artificial smoother or time filter (Asselin 1972) has to be introduced. This is anyhow a
defect. More importantly, the absence of false energy source or sink due to time-
differencing can not be ensured in this scheme.

3. The Total Energy Conserving Semi-Implicit Time-Difference Scheme of Global
Spectral-Vertical Finite-Difference Model of Baroclinic Primitive Equations

Based on the formulation principle and method of general fidelity scheme of physical
conservation laws, a total energy conserving semi-implicit time-difference scheme for
global spectral-vertical finite-difference model of baroclinic primitive equations (16) — (20)
can be given as follows

+1
e Y Stk 4 7814+ & B mis = O, @8)
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Dyt ~— Do . U 4+ V? "
LTt 4 DT { [——2 - + cp]}m
NL 6}'+ RT
+180V2':2R(T§+1—T§)1n6 L+ qRTE — T + —— 220 (prtt — n)]
1=k+1 -7 i
+ &, (B"D" e = 0, 39
ekl
—’"""NT”“ + 1T,
lnat+]/o'k~
B [ 2 Dy —Dp Ao, + (D —Dp | T &BT 0 =0,
m, 1
(40)
BBy PTL 4+ 8 (EDA) + & (B PN pi = 0 41
A m. 1 0Po Gy ) mi €, (B"pY) . = 0. “n

Here. T, po are reference temperature and surface pressure of model atmosphere
respectively, 3, is switch constant which can be set as 0 or 1, when 3,is 0, computational
schemes (38) — (41) are an explicit scheme. when f; is 1. it becomes a semi-implicit

scheme, and
1 3 Fv 3 Fu

ZP==0a=w ax Taop (42a)
_ 1 dFu 1 dFv 2{: Ut 4+ v? ]
Pr=="3=@ 32 " @ au " Viza—m T2/ (42b)

U 3T , VaT , .aT RT, w
TT_a(l-—;t) A T aaut%3 ¢, (420
PT = Z(vhj-Vp,—Fp,D,-)Aa,, (42d)
=t
aU __RT ap

Fu=V<&+H — e T p adk (43a)

_ _ 49V _RT = 5 9P

=—Ug&+ D “aa Ps(l ,u)aa#. (43b)

Model atmosphere is vertically divided into NL layers. Basic variables {, D, T are defined
at intermediate integer level (the “full levels”), and o at interface levels ( the *“half
levels”) between these layers. Define d% = &NH% = 0 and other &H% at half levels by
discretized (22) as follows

k’
Girl = Opel 2<D ’Vp,)Aa Z(D+ ’VPS)AG

k—1929"'9NL—1. (44>
Using discretized hydrostatic relations (20), @ at both full and half levels can be
determined as

¢k+ 65+L - Qk—io‘k~7
y = A + RTk = Q}.;._l_ + akRTk: (453)
o 2

Oprl NL ;41
L =@+ > RTn-—, 45b)

-7 j=k+1 i~z

¢t+% = ¢k—% —_— RTk
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G-l Ol

__ _ 2
4 =1— g,In et 46)
set vertical advection item of variable X at full level as
-3X 114 Xisy — Xu - X, — Xy
(o 3—0)* = ] Okt 1 ——Ad—k+_;__— + Or-1 ——_Ad'k_%
X=UV,T, “n
let vertical velocity @ at plane p satisfies
v 17 lna, 1 /a,__
(= 1:‘ . Vb, — @ Dy + f CVp) — —L E (D; 4+ -2 « V p,) Bg;, (48)

then it can be verified that the satisfying of (45a, b). (47) and (48) can ensure that no
false energy source or sink caused by vertical finite-difference would occur. If we further
define 61 = 0, then a,=1 can further ensure that no spurious angular momentum source

or sink due to vertical finite-differencing arises.

dU .9V .3T

Through (35a), (36) and (37). define @, O’— a% aﬁand;at full levels, we

can get the grid point value of ZT, DT and TT at any full level. Since the basic variables
of . D, T at any level, p, as well as geopotential height @, can all be represented by finite
series of spherical harmonics

M M
XApon = > D X.Plwe™, 49

m=—Ml=m
where the truncation is triangular, the maximum truncated wave number is M, the
number of equally spaced longitudinal point for each latitude takes NI=3M -1 and the
number of unequally spaced meridional Guassian grid point for each longitude takes NJ=
(3M +1)/2 so as to ensure the precision of horizontal discretized computation with
possible highest efficiency (Machenhauer and Rasmussen 1972; Eliasen et al. 1970). By
using (49) grid-point values of {, D, T and p, at n time can be obtained, by using the

. . . D¢ . ax ul dpr
essential properties of spherical harmonics (ﬂ)"' =imX,, (ﬁ)”‘ = ;X,,,_, - XA,

3 _ e+
Mmoot = E X, (u 0 ™ VIPr (we™ = pe ———Pr(we™ we can get the grid-
m=—M
a a2 p.
point values of U, V, %—’f % ai’ ai and thereby Fu, Fv, ZT, DT, TT and PT at
every spherical vertical level; finally, by further using
NI NJ .
Xpir = 2, 2w X A, gy, 04 PT (gpe™™, (50)

=1 y=1

ZT v DTy, TT,1.and PT, ., could be obtained. Here, w (z) is Gaussian weighting
factor. It is apparent that Eqs. (38) — (41) can be written both in spectral space and grid
point space. Using Theorem 2 straightforwardly as described in Section II, we can get a
equation

DY, € + AV, (e 4 Y+ Y, = 0. 6D
Through seeking a solution €” of Eq. (51) with O (At®) =0 (1) order of magnitudes, it can
be ensured that the cubic total energy global integration conservation property (28) will
retain undestroyed in the course of the semi-implicit (or explicit scheme) time
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differencing. This is equivalent to ensure no spurious source or sink of total energy due to
the time differencing. Because only two time levels are involved, Schemes (38) — (41)
will not produce the computational mode like that of traditional three time levels scheme

(29 — (32). thus an artificial smoother or time filter is not needed here.

IV. COMPARATIVE EXPERIMENTS OF REAL DATA MONTHLY NUMERICAL INTEGRATION

1.  Designs of Experiments

(1) By further performing monthly integration of the total energy conserving semi-
implicit scheme using uninitialized summer FGGE data, the present work attempts to test
the feasibility of long-term integration of the scheme under the complex conditions more
closely approximate the actual atmosphere, and meanwhile test the capability of the
scheme in preserving high-order total energy conservation in long-term integration
operations. In the past. only long-time feasibility tests had been conducted respectively
under idealized conditions using the relatively simplified energy and enstrophy conserving
explicit scheme for a spectral model of barotropic vorticity equation and energy. enstrophy
and angular momentum conserving semi-implicit scheme for a spectral model of barotropic
primitive equations, although the results turned out to be satisfactory (Zhong 1992b;
Zhong 1993: Zhong 1995a; Zhong 1995b).

(2) With identically idealized flat zero topography and identical real-data initial
conditions. the present work also attempts to further perform comparative experiments
with monthly dynamic integration between the traditional semi-implicit scheme and the
total energy conserving semi-implicit fidelity scheme. The purpose is to test the
contribution of the sources or sinks of the systematic errors concerning energy
conservation due to the traditional time difference (called type Z systematic errors for
. short) to the total systematic errors and total errors, under the complex conditions of the
coexisting of internal systematic errors with meteorological backgrounds more closely
approximate routine operation. Meanwhile, the paper also aims to test the possibilities
and potentials of improving actual medium-range even monthly forecast by formulating a
total energy conserving (semi-implicit) fidelity scheme and thereby eliminating
corresponding types of systematic errors. In the past, comparative experiments had been
respectively conducted under idealized conditions between the relatively simplified energy
conserving explicit scheme for a barotropic vorticity equation spectral model. energy
conserving semi-implicit scheme for a spectral model of barotropic primitive equations and
the corresponding traditional scheme, the results revealed marked differences after long-
time integration (Zhong 1992b: Zhong 1995a).

Since in the above-described models there is no internal physical process involved in
the atmosphere other than the pure dynamic process, no real underlying surface
topography conditions, and the initial data are used without initialization. implying that
the initial value of integration is far from being perfect, it is, consequently, no surprise
that there exist several corresponding systematic error sources or sinks in the model of the
total energy conserving fidelity scheme. If total energy conserving fidelity scheme model is
set as a control standard, then it follows that, in addition to the systematic error sources
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in the fidelity scheme, there also exist the sources or sinks of type Z errors in the
traditional model due to the failure to retain total energy conservation in the traditional
semi-implicit time-difference process.

Besides, it is traditionally believed that time discrete errors are trivial as compared
with spatial discrete errors and therefore are insignificant (Jiang et al. 1989). The present
work, however, by retaining such noticeable errors as topography in the experiments,
attempts to test whether the effects of such errors can be truly ignored when coexisting
with other obvious error sources or sinks of meteorological significance.

(3) With topography included. further perform corresponding numerical integration
experiments of the traditional semi-implicit scheme so as to roughly estimate the
improvements obtained by removal of certain type Z errors in the traditional scheme and
the improvements derived by replacing the idealized but false flat underlying surface with
real topography data. and make an evaluation on the relative importance of the two. If we
set the traditional model included real topography data as a control standard. then it can
be said that, in addition to the systematic error sources or sinks in this model, there also
exist systematic error sources or sinks (called type T errors for short) in the traditional
model with idealized flat underlying surface due to the artificial substitution of real

topography data with idealized flat topography.
2. Experiment Data

By using the new type of total energy conserving semi-implicit time-difference scheme
for global spectral vertical finite-difference model of baroclinic primitive equations inclusive
of idealized flat topography. the traditional semi-implicit time-difference scheme for global
spectral vertical finite-difference model of baroclinic primitive equations inclusive of
idealized flat topography and real model topography respectively. the present work
performs three sets of numerical experiments, each having the same thirteen monthly
integrations. The initial field of these integrations is FGGE data without initialization
dated June 1, June 5, June 10. June 15, June 20, June 25, July 1, July 5, July 10, July
15, July 20, July 25 and August 1. respectively.

For all the calculations in this paper, M=42, NL=9, NI=128, NJ=64, At=230

min, &=0. 05.

3. Results of Experiments

(1) Feasibility and improvements of essential properties

Results of the 30-day numerical integration of traditional scheme and total energy
conserving fidelity scheme all suggest that there are notable improvements on the essential
properties of total energy and mass conservation of the new type of scheme in contrast
with the traditional one (see Fig.1). The new scheme. as experiments demonstrate, can
noticeably modify the deviations from the high-order total energy and mass global integral
conservation characteristics of the traditional scheme, although such deviations, increasing
monotonously with the growth of integration time. are not great in quantity on monthly
integral time scale. Taking the 30th day of integration for instance, these relative
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deviations from the conservation variables are all close to some one-ten thousandth.
Besides. results of Fig. 1 undoubtedly indicate that without adopting stability methods of
artificial time smoothing or filtering that have side-effects, the fidelity scheme can
integrate smoothly for a long time. Theorem 2 as formulated in the paper can surely be
applied to solving the formulation problems of high-order total energy conserving time-
difference scheme for baroclinic primitive equations, and the high-order total energy
conserving semi-implicit fidelity scheme for global spectral-vertical finite-difference model
of baroclinic primitive equations based on Theorem 2 is also applicable to long-term
numerical integration using real data without initialization.

(2) The contributions of type Z and type T error to total systematic error of monthly

predictions

Errors derived from the average predictive field of a number of individual integration
represent an important aspect of total errors of the model. The predictive systematic
errors in the paper are referred to as errors of the 30-day average predictive field obtained
from the thirteen monthly integrations.

Comparing the evolution curves of RMS error of the average field of 500 hPa
geopotential height between traditional semi-implicit schemes inclusive and exclusive of
real topography under identical conditions of integration, it can be noted that the
contribution of type T systematic error to total systematic RMS error is. beyond doubt,
very striking: it is roughly one-third of the total RMS error when total integral time
reaches two weeks and reaches even two-fifths of its total amount four weeks afterwards
(see Fig. 2).

Comparing the evolution curves of RMS error of 500 hPa geopotential height average
field between the total energy conserving semi-implicit fidelity scheme and the traditional
semi-implicit scheme exclusive of model topography under identical conditions of
integration, it can be easily seen that the contribution of type Z systematic error to total
RMS error can approximately reach one-third of the total RMS systematic error at the end
of second week of integrations and exceeds half of its total amount four weeks afterwards
(see Fig. 2).

Experiments also indicate that the systematic RMS error of the fidelity scheme
exclusive of topography is lower than that in the traditional scheme inclusive of topography
15 days of the integration afterwards (see Fig. 2). This implies that, as far as systematic
errors are concerned, the effects of the type Z errors are, at least. in a sense, no less great
than that of the type T errors.

If the type of errors in extending forecasting period can in a sense reflect the model
climate systematic errors associated with climate drift, then it is by no means impossible to
contribute much to the solving of climate drift by way of formulating new type of high-
order total energy conserving scheme and thereby eliminating corresponding type Z
systematic errors in traditional schemes.

(3) The average improvement of total errors of monthly integration

The averaged predictive errors derived in a number of numerical integration of a model
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represent the average level of the total predictive errors of the model.

With the daily average value of RMS error of 500 hPa geopotential height of the
thirteen 30-day integration using the traditional semi-implicit scheme exclusive of
topography (called Scheme A for short) as reference, it can be seen that, with the
coexistence of multiple error sources or sinks, the average improvement of total RMS
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Fig. 1. The 30-day computational variation of the conservative global integration of total energy and
g g B B

mass of baroclinic primitive equations in the summer of 1979 (The digits in the figure represent

the month and day of the initial data of each integration, for instance, 601 denotes June 1 and
715 represents July 15. Curve ECW: The computational variation of the total energy using the
new fidelity scheme: Curve ETW: The computational variation of the total energy using the

traditional scheme; Curve MCW: The computational variation of the mass using the new
fidelity scheme: Curve MTW: The computational variation of the mass using the traditional

scheme) .

error obtained by formulating a total energy conserving fidelity scheme (called Scheme B

for short) and thereby eliminating the corresponding type Z errors in Scheme A can reach
approximately one-fourth of the total RMS errors at the end of second week of integration
and even exceed over one-third of the total four weeks afterwards (see Fig. 3). This well

demonstrates the great potentials of Scheme B. In fact, it can be seen that as compared
with the average reduction of the total RMS errors obtained by adding model topography
(called Scheme C) and thereby eliminating corresponding type T systematic errors in
Scheme A, improvement with Scheme B does not surpass Scheme C until after 15 days.
Prior to this point, Scheme B is obviously inferior to Scheme C (see Fig. 3). This suggests
that the advantages of Scheme B primarily focus on long-term numerical integration.
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In the same way, the improvements on predictions can be clearly confirmed by
comparison among the three geopotential height fields with corresponding observation field
deducted. Figure 4 indicates. averagely speaking, on the 30th day of thirteen integrations,
for the deviations in Scheme A, Scheme B reduces over 70 percent. Scheme C no more
than 45 percent in the largest negative error center (also the maximum global error center
in view of absolute value) at the Antarctic Pole; in the largest positive error center at mid-
latitude over the Southern Hemisphere, Scheme B reduces 25 percent, Scheme C zero
percent; in the largest positive error center at mid-latitude of the Northern Hemisphere,
both Scheme B and Scheme C reduce 25 percent. However, in the largest negative error
center over the Arctic Pole. Scheme B reduces less than 20 percent and Scheme C more
than 65 percent. Scheme C has better performance in the Northern Hemisphere while
Scheme B is better in the Southern Hemisphere. This is a reasonable reflection of the
notable differences between the actual underlying surface of the two hemispheres. The
striking differences between the two schemes in framework and subtleties also reasonably
depict the entirely different nature of the two types of errors. In general, on the 30th day
of integrations, Scheme B certainly has better global performance than Scheme C. This is
consistent with the calculating results of RMS errors (see Figs. 2—4).
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Fig. 2. The 30-day RMS error of the average of Fig.3. The 30-day average of RMS error of 500

500 hPa height of computational hPa height of computational variation of
variation of  thirteen integrations the thirteen integrations (PATW: the
(APTW: the traditional scheme inclusive traditional scheme inclusive of idealized
of idealized flat underlying earth’s flat underlying earth’s surface; PACW:.
surface; APCW: the fidelity scheme the fidelity scheme inclusive of idealized
inclusive of idealized flat underlying flat underlying earth’s surface: PAT:
earth’s surface;: APT: the traditional the traditional scheme inclusive of real
scheme inclusive of real underlying underlying earth’s surface).

earth’s surface).
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V. SUMMARY

Physical laws of conservation are basic laws of natural world. To retain the
characteristics of conservation law is a basic requirement in well-reasoned and reliable
discretized computations. As has been derived in Section II of this paper, some major
earlier formulation designs of conservative time-difference schemes can be directly given as
special cases of the two theorems for time-difference fidelity schemes of general quadratic
and cubic physical conservation law. Hence, the two mathematical theorems formulated
and proved here would surely broaden the range of solvable problems and provide new
mathematical basis for formulating extensive types of time-difference fidelity schemes of
high-order physical conservation laws, in particular the cubic total energy conserving
semi-implicit scheme for baroclinic primitive equations, thus further providing new basis
and possibilities for resolving a wide range of temporal-spatial discrete fidelity schemes on
the basis of previous instantly conserving spatial discrete schemes. For instance, based on
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Fig. 4. The 30th day 500 hPa global average contour chart of the thirteen integration (a)
Observational height: (b) Forecast height using the traditional scheme inclusive of idealized
flat underlying earth’s surface with observational height deducted: (¢} Forecast height using
the traditional scheme inclusive of real underlying earth’s surface with observational height
deducted: (d) Forecast height using the fidelity scheme inclusive of idealized flat underlying
earth’s surface with observational height deducted).

the well-known quadratic kinetic energy and enstrophy instantly conserving spatial finite-
difference scheme for vorticity equation (Arakawa 1966), by using Theorem 1, a quadratic
energy and a quadratic enstrophy conserving temporal-spatial finite-difference scheme for
vorticity equation, never formulated before, can be worked out respectively. Also on the
basis of the well-known cubic energy instantly conserving spatial finite-difference scheme
for shallow water equations (Arakawa and Lamb 1981), by using Theorem 2, an energy
conserving temporal-spatial finite-difference scheme for shallow water equation can be
formulated. Besides, the two theorems constructed in this paper can also thoroughly solve
linear and nonlinear time discrete computational instability of evolution problems with
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certain types of quadratic and cubic conserving integral properties, and by combining
earlier these types of quadratic or cubic instantly conserving spatial discrete schemes.
thoroughly solve their linear and nonlinear temporal-spatial discrete computational
instability.

The traditional global spectral-vertical finite-difference semi-implicit model for
baroclinic primitive equations is being employed by many countries in the world for
operational forecast and general circulation simulation. For various reasons, the basic
formulation problems of total energy conserving semi-implicit scheme for baroclinic
primitive equations remain unsolved for long. The present work demonstrates that
Theorem 2 as formulated in the paper can surely be applied to solving this problem, and
the high-order total energy conserving semi-implicit fidelity scheme for global spectral-
vertical finite-difference model of baroclinic primitive equations formulated by Theorem 2
is also applicable to real data long-term numerical integrations.

Thirteen FGGE data month-integration numerical experiments indicate that. the new
type total energy conserving semi-implicit fidelity scheme can certainly modify the
systematic deviations of energy and mass conservation characteristics of the traditional
scheme. It should be particularly noted that, under the same experimental conditions of
the present work, the type Z systematic error source or sink created by the violation of
physical conservation law in the time difference process of the traditional model can
contribute up to one-third of the total RMS systematic error at the end of the second week
of integration and exceeds one half of the total amount four weeks afterwards. In contrast,
by realizing a total energy conserving semi-implicit fidelity scheme and thereby eliminating
the corresponding type Z errors, roughly an average of one-fourth of the RMS error in the
traditional forecasting can be reduced at the end of the second week of integration, and
averagely more than one-third reduced four weeks afterwards. The potentials of the total
energy conserving fidelity scheme can be great for improving traditional medium-range and
even monthly weather predictions.

Experiments in the present work also show that type Z errors due to traditional time-
difference are far from notable in quantity (see Fig. 1) and it seems less significant to
eliminate the negative effects of these small deviations. Results of the experiments,
however., prove just the opposite. In fact, if we look at it from another angle. these
results are by no means strange. Evidently, the actual atmospheric system is a complex
nonlinear system with sensitivity of initial value. Since type Z errors are internal errors
available at all integral time, its total accumulative effects, without doubt. can be very
great.

The formulation of (high-order) conserving scheme is usually believed to be of great
or even remarkable importance in problems requiring long-term numerical integration.
However, up till now, not enough experiments, particularly those of conserving time-
difference schemes, seem to support this statement. Hence, it is, strictly speaking,
merely a theoretical hypothesis. Moreover, there is no conclusion whatsoever as to how
long it will take before this type of computational design becomes significant. Experiments
of the present work indicate that, if we assume the reduction of total systematic RMS
error by half and total RMS error by one-third as significant. then this hypothesis would
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undoubtedly hold true: if it can be said as significant to reduce total systematic RMS error
by one-third or less and total RMS error by one-fourth or less, then the “long term” could
mean month, two weeks or still shorter.

In a sense. the negative effects of type Z interior systematic errors due to traditional
time-difference on the total systematic errors are no less great than that of type T external
systematic errors due to the artificial substituting of real topography data with idealized
zero topography. Such a result would indeed be very helpful for us to better understand
the significance of constructing high-order conserving time-difference schemes.
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