利用钻孔应变资料预报新疆伽师强震群

蒋靖祥 赖爱京 胡 群 徐衍冈 (新疆维吾尔自治区地震局,乌鲁木齐 830011)

摘要 介绍了利用钻 孔应变资料预报 1997年新疆伽师强震群的基本情况,分析 了钻 孔应变异常的基本特点.伽师地震前距震中 250 km的 乌什钻 孔应变趋势变 化 一反常态并且短临阶段的应变值出现突跳.

主题词 新疆 应变观测 地震预报 伽师强震群

地震基本参数及特点

第 20卷 第 2期

1998年 6月

1997年 1月 21日以来,在新疆维吾尔自治区伽师县境内发生了地震记录史上罕见的强 震群.其中 $M \ge 6.0$ 地震 7次,6 $Q > M \ge 5.0$ 地震 6次.表 1列出了新疆地震台网测定的地 震基本参数.

表 1 伽师地震群中 M > 5.0地震基本参数

日	发	震	肘	间	震中	震级	
序号			山门		东经	北纬	$(M_{ m S})$
1	1997	7-01-21-	-09 47:	10. 5	77° 02′	39° 31′	6. 2
2	1997	7-01-21-	-09 48	21. 1	77° 03′	39° 35′	6. 4
3	1997	7-01-29-	-16 20	14. 3	77°01′	39° 36′	5. 2
4	1997	7-02-12-	-04 20	59. 4	77° 03′	39° 37′	5. 3
5	1997	7-02-21-	-21: 29	12. 4	77° 02′	$39^{\circ} 40^{\prime}$	5. 0
6	1997	7-03-01-	-14 04	13. 8	76° 57′	39° 34′	6. 0
7	1997	7-04-06-	-07: 46	16. 3	77° 02′	39° 31′	6. 4
8	1997	7-04-06-	-12 36	32. 5	77° 02′	39° 33′	6. 2
9	1997	7-04-11-	-13 34	43. 5	$76^{\circ}58^{'}$	39° 36′	6. 6
10	1997	7-04-13-	-05 09	08. 7	$77^{\circ}00^{'}$	39° 33′	5. 5
11	1997	7-04-16-	-02 19	09. 4	$76^{\circ}58^{'}$	$39^{\circ}41^{'}$	6. 3
12	1997	7-05-17-	-11: 58	22. 0	77°01′	$39^{\circ} 32^{\prime}$	5. 6
13	1997	7-06-24	-17: 24	45. 5	77°01′	39° 29′	5. 1

根据表 1及目前掌握的资料分析, 伽师强震群具有以下特点:

- (1)强震的发生在时间上高度密 集.在不到 3个月的时间内连发了 7 个 № 6.0地震.
- (2) 在空间上强震密集分布,13 次 M≥ 5.0地震震中分布在长不到 20 km, 宽不到 10 km 的很小范围内.
- (3) 在地震群中,6级地震多,5 级地震少.
- (4) 地震发生在人们认为不易发 生地震的塔里木盆地内.
 - (5) 震中区未见断裂穿过.

区域构造、台站分布及震中分布见图 1.

用现代地震学理论很难解释上述特点,因此,伽师强震群的发生给我们提出了新的课题和 新的思索,

2 用钻孔应变资料预报伽师强震群

2.1 根据钻孔应变趋势异常判定强震发生背景

收稿日期: 1997-07-31

第一作者简介: 蒋靖祥,女, 1956年 2月出生,副研究员,从事钻孔应力,应变预报地震研究.

图 2为乌什台应变旬均值曲线. 其中曲线 a为正常年变曲线,是取正常年份资料用迭代法求得的.曲线形态为正弦波形,周期为 12个月,双振幅为 7× 10 ⁷~ 8× 10 ⁷量级,峰值相 ⁴⁰"位在每年的 3月份,谷值相位在每年的 7月底 8月初.b为实测曲线.c为实测值减去正常年变值的残差曲线.

由图 2可见,自 1990年以来,应 变测值共有两次偏离正常值.第一次 出现在 1990年 10月,结束于 1992 年 4月.异常前期表现为振幅增大, 与正常值(7. 5× 10⁷)相比增大了 2.

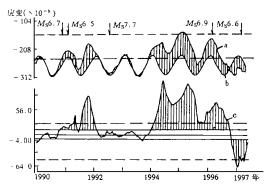


图 2 新疆乌什台钻 孔应变 旬均值 曲线 Fig. 2 Ten-day mean value curves of drill-hole strain at Wushi station from 1990 to 1997. a 正常年变曲线; b 实测曲线; c 残差曲线

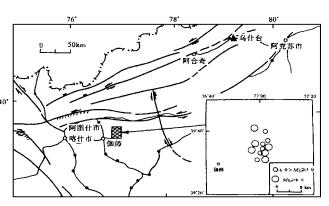


图 1 区域构造、台站及震中分布
Fig. 1 Distribution of regional structures, drill-hole strain station and epicentres in Jiashi area

② 10 ⁷,异常比(残差与同期正常值之比)约为 30%.周期和相位正常.在此期间发生了 1990年 11月 12日吉尔吉斯斯坦境内的白沙龙 Ms 6. 7 地震(震中距乌什台 240 km)和 1991年 2月 25 日柯坪 Ms 6. 5地震(震中距乌什台 100 km).异常的后半期表现为振幅明显增大,最大双振幅为 1. № 10 ⁶,比正常值增大了 ¾ 10 ⁷.异常比为 53%.周期发生畸变,1991年的周期缩短为 9个 53%.周期发生畸变,1991年的周期缩短为 9个 提前两个月,1992年峰值相位提前 5个月,由 1992年 3月提前到 1991年 11月.1992年 8月 19日,在吉尔吉斯斯坦共和国境内苏萨梅尔发生了 Ms 7. 7地震,震中位于乌什台北西方向 490

km处.

第二次异常始于 1993年 11月,至 1997年 6月已持续了 3年 8个月.其特点是:

- (1) 振幅显著增大. 1995和 1996年振幅增大了 5. 3× 10⁷. 异常比为 70%. 这次异常增幅 比历年都大.
- (2) 1993年 10月~ 1996年 9月实测值高于正常值,1996年 9月份以后实测值低于正常值.前者表征着应变的积累,后者预示着应变的释放.
 - (3) 周期发生畸变. 1994年周期缩短为 8个月, 1996年周期缩短为 10个月.
- (4) 相位滞后 . 1994与 1995年谷值相位滞后 1个月,1996年滞后 6个月 . 峰值相位 1994年滞后 3个月,1997年提前了 1个月 . 自 1994年以来,在新疆地震局召开的多次地震趋势会商会上,我们对乌什台应变异常都进行了分析,认为该异常属地震前兆 . 我们提出的预报意见"在乌什西南方向 200~300 km范围内存在发生 6~7级地震的可能性"被编入 1995,1996和1997年年度趋势会商报告中 . 结果在 1996年 3月 19日于乌什西南的阿图什发生了 Ms 6. 9地震 (Δ = 240 km) . 事实表明上述判断是正确的 . 1997年伽师强震群震中也位于乌什台西南 250 km 处 .

2.2 利用应变资料对伽师强震群进行短临预报

2.2.1 1997年 2月 21日伽师 Ms5.0地震及 3月 1日 Ms6.0地震的预报

在乌什台钻孔应变 3年多的趋势异常的背景上,尽管已发生了 1996年 3月 19日阿图什 M_8 6. 9地震和 1997年 1月 21日伽师 M_8 6. 2, M_8 6. 4地震,但应变异常依然存在.

1997年 1月 31日~ 2月 1日,乌什台应变 N52° E元件出现了 1.5% 10°量级的张性突跳(图 3). 这是自 1984年观测以来首次出现如此大量级的应变变化,经分析认定属短临异常.因此,1997年 2月 18日我们根据多年的研究及大量震例分析,提出在 1997年 2月 18日到 3月 21日,以阿合奇为中心 200 km范围内将可能发生 5.6 M 5.9地震的预报意见.并正式填写了短临预报 A类卡片.

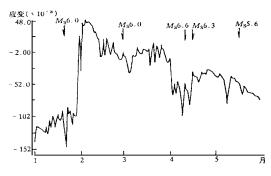


图 3 乌什台 1997年应变日均值曲线 Fig. 3 Daily av erage value curve of drill hole strain at Wushi station in 1997.

事实上,在预报意见提出后的第 3天发生了伽师 Ms5.0地震,第 11天发生了伽师 Ms6.0地震.震中位于乌什台西南 250 km处,距预报中心点的阿合奇台 190 km.预报三要素均正确.

2.2.2 1997年 4月 6日伽师 *M*s 6.4, *M*s 6.2地 震的临震预报

1997年 4月 3日乌什台钻孔应变日均值出 3 现压性突跳,量级为 4.2× 10⁻⁷(图 3).在整点值 图上,3月 19日,25日,4月 3日,应变整点值分 别出现 1.4× 10⁻⁶,1.8× 10⁻⁶,1.36× 10⁻⁶量级 的压性突跳.

另外,距伽师 800 km的库尔勒台应变整点值

于 3月 9日出现指数曲线 (图 4).据以往的震例分析,从指数曲线出现第 1天算起 1个月内将会发生地震.如 1987年 1月 24日乌什 Ms6.4地震前 12天乌什台钻孔应变,1993年 2月 3日和静 Ms5.4地震前 11天库尔勒台钻孔应变,1995年 3月 19日和硕 Ms5.0地震前 29天乌鲁木齐台钻孔应变,1996年 1月 9日沙湾南 Ms5.6地震前 28天库尔勒台钻孔应变均出现了指数曲线.因此,1997年 4月 4日 18时,我们提出"近几天内 344 $\log \chi (\times 10^{-3})$

在伽师地区将可能发生 6级以上地震"的预报意见,并建议预报室填写临震预报卡.

1997年 4月 6日在伽师发生了 Ms6. 4和 Ms6. 2地 - π 震. 预报三要素与实际发生地震三要素吻合.

2.2.3 1997年 4月 11日伽师 Ms6.6地震临震预报

乌什台应变日均值在 1997年 4月 3日出现压性突跳,幅度达 3. 6× 10⁷.正常情况下该日均值在 10⁸范围内,因此认定应变出现明显的临震异常.乌什台应变整点值于 4月 8日 04时出现了量级为 1. 38× 10⁶的压性突跳,4月 9日 06时突跳达 1. 2× 10⁶,而在 10日零点突跳达 1. 38× 10⁶,在每次压性突跳之后,便是张性回弹.构成

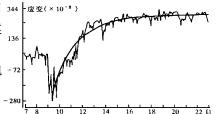


图 4 1997年 3月库尔勒台 应变整点 值曲线

Fig. 4 Curve of o clock value of drill-hole strain at Kuerle station in March, 1997.

达 1.3% 10°.在每次压性突跳之后,便是张性回弹,构成了张压交替变化的震前应变失稳性态.8日 04时到 10日 16时共出现 6次这种张压交替变化.我们认定属临震应变信息.

库尔勒台 $N45^{\circ}$ E元件应变于 4月 5日出现指数曲线 (图 5). 4月 6日伽师 Ms 6. 4地震对指数曲线没有产生影响,表明仍有发生大震的可能性.

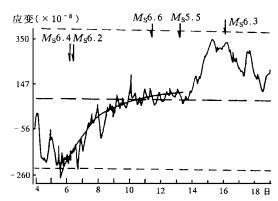


图 5 库尔勒台 1997年 4月应变整点值曲线 station in April, 1997.

此外,远场场兆亦比较明显.距伽师 1000 km的乌鲁木齐台应变 E-W 元件日均值打破 了与气压呈负相关的规律.分析认为是场兆异

1997年 4月 10日 19时,我们提出"在 4 月 13日之前伽师地震区可能发生 6. € M≤ 7. 0地震"的预报意见,结果于 4月 11日 13时 在伽师发生了 Ms 6. 6强震.

2. 2. 4 1997年 4月 13日伽师 Ms 5. 5地震临 震预报

4月 11日伽师 $M_{\rm s}$ 6. 6地震后,乌什台应变 Fig. 5 Curve of o clock value of drill-hole strain at Kuerle 整点值张压交替变化剧烈. 12日 04时压应变 剧增,10时增至 1.0% 106,继之张应变回弹,

完成了应变压 张交替变化的过程,进入应变能释放阶段,表明震情紧迫.4月 12日 19时.我 们向有关部门汇报了异常情况并提出"1997年4月12日~4月20日在伽师震区很可能发生 地震"的预报意见并填写了 A类预报卡.4月 12日晚 12时,新疆地震局向伽师县震区发布临 震预报,向国家地震局填报 1周的临震预报卡.4月 13日 03时在伽师发生了 M_s 5.5地震.预 报基本准确.

2.2.5 1997年 4月 16日伽师 Ms6.3地震临震预报

1997年 4月 14日乌什台应变日均值出现 1. & 10 / 量級的异常变化,是正常变化的 10 倍. 应变整点值于 4月 14日 08时出现 1.0% 10⁶量级的压性临度异常. 12时张应变回弹, 16 时再下压 3. × 10⁷,基本上完成了压 张过程.另外,库尔勒台钻孔 N45°E应变整点值在指数 异常的背景上出现张性异常,表明应变能进入释放阶段.据此,钻孔应变分析人员于 4月 14日 作出了临震预报,预报意见为" 1周内将会发生地震".分析预报室根据我们提 出的预报意见并结合地震序列等资料,从 14日 18时 30分~ 15日 01时 30分经过 7个小时的 分析讨论,对 4月 16日伽师 Ms6. 3地震作出了准确预报.

2.2.6 1997年 5月 17日伽师 Ms5.6地震临震预报

1997年 5月 17日伽师发生了 Ms 5. 6地 震. 震前 5天, 钻孔应变学科组作出了临震预 报: 5月 12日~ 5月 19日,伽师地区很可能发 生中强地震,保守估计震级为 5~ 6级,不保守-66.0 估计震级为 6级左右. 预报依据是:

(1) 1997年 5月 7日,乌什台应变整点值-139 出现稳态压性变化,幅度为 1. ※ 10-7.5月 9 日 12~ 14时,应变整点值出现压性突跳,量级 为 1.66× 10⁻⁶.15~ 17时出现张性返弹.到 10⁻¹⁹⁸ 日 10时,共出现了 5次压-张交替变化,应变进 入失稳阶段.压应变幅度依次递减,由 1.66公 10 ⁶減至 1.06× 10 ⁶.但是,此压张过程持续时 间仅 3天.稳态下压幅度不够.且是在正常背景

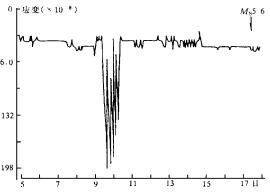


图 6 乌什台 1997年 5月 应变 整点 值曲线 Fig. 6 Curve of o clock value of drill-hole strain at Wushi station in May, 1997.

.由此判断震级不大(图 6).

- (2) 1997年 5月 9日,乌什台应变日均值出现压性突跳,量级达 3. ※ 10 7,属临震异常.
- (3) 库尔勒及乌鲁木齐台钻孔应变无明显异常,说明乌什应变异常是近场信息,波及范围不大.据此判断地震震级亦不大.

新疆地震局于 5月 13日作出临震预报"1997年 5月 13日~ 5月 19日伽师可能发生 6级 左右地震"""".

2.2.7 1997年 6月 24日伽师 Ms5.1地震临震预报

1997年 6月 24日伽师发生 Ms 5. 1地震.震前 13天钻孔应变学科组提出"

6

月 12日~ 19日可能发生 5. 6≤ M≤ 5. 9 地震" .其依

据是:

8

06 - 07

(1) 乌什台钻孔应变整点值于 6月 8^{68.0} 日出现稳态压性变化,到 9日 10时,变化幅度达 ¾ 10⁷.9日 14时,出现张性突跳,-136幅度达 6. 6× 10⁷.15~ 16时压应变突跳达 1. 6× 10⁶.17~ 18时张应变突跳达 1. 66× 10⁶.这种张压交替的变化说明应变进入失-204稳阶段,临震异常已出现.15日 07~ 12时,又出现了 3次压-张交替变化过程,最大幅度为 6. 0× 10⁷(图 7).19日 15时,出现张性突跳,幅度达 3. 0× 10⁷.此时,压-张异常全过程结束.

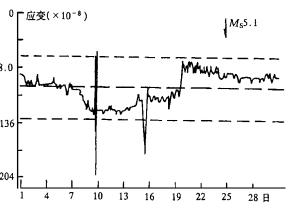


图 7 乌什台 1997年 6月应变整点值曲线 Fig. 7 Curve of o clock value of drill hole strain at Wushi station in June, 1997.

- (2) 乌什台应变日均值变化仅 1. 3× 10⁻⁷,量级不大,由此判断震级不大.
- (3) 库尔勒和乌鲁木齐台应变没有明显的变化,说明震源应变场的波及范围不大,故而要释放的应变能亦不大,震级也不可能太大.

7C 2 1771年前週間中国展研刊多级人员队用员											
编号	异常出 现时间	异常持续 时间(天)	应变最大变化 幅度 (× 10 ⁻⁶)	是否 预报	预报 震级 (<i>M</i> s)	实发震级 (M _S)	预报时段	发震 时间			
1 01-08	13	1. 50	无		6. 2		01–21				
	01 00	13	1. 50	无		6. 4		01-21			
2 01-31	01.01	22	2. 78	有	5.0~ 5.9	5. 0	02–18~ 03–21	02-21			
	01–31	30		有		6. 0		03-01			
3 03–29	0	1.26	有	4. T. C. O.	6. 4	04.04.04.00	04-06				
	03-29	9	1. 36	有	大于 6.0	6. 2	04-04~ 04-09	04-06			
4	04-08	3	1. 44	有	6.0~ 7.0	6. 6	04-10~ 04-15	04-11			
5	04-12	1	1. 02	有	5.0~ 6.0	5. 5	04-12~ 04-20	04-13			
6	04-13	3	1. 08	有	6.0~ 6.9	6. 3	04-14~ 04-21	04-16			
_	0.5.05			-				0.5.4.5			
7	05-07	4	1. 66	有	5.0~ 6.0	5. 6	05-12~ 05-19	05–17			

有

5.0~ 5.9

表 2 1997年新疆伽师强震群临震异常参数及预报情况

1. 50

13

06-12~ 06-19

06 - 24

5. 1

- (1) 小幅度稳态持续性下压,应变量级为 10⁻⁷;
- (2) 失稳性压-张交替变化,幅度大,一般为 10⁶,持续时间短.压应变表征应变积累,张应变表征应变释放.地震发生在张应变阶段.指数曲线亦是重要的临震异常特点.我们根据乌什台和库尔勒台的异常并结合乌鲁木齐台应变变化,对伽师强震群的 9次 M≥ 5.0地震作出了准确预报.事实表明,钻孔应变仪能够记录到震源传递到台站的应变信息.因此,利用应变资料能够对地震三要素作出较好的预报.

4

- (1) 台站观测人员积极参与预报是作好预报工作的关键一环.在伽师地震期间,乌什台观测人员赖爱京。 ,对伽师地震的成功预报作出了重要贡献.
- (2) 观测数据的快速传递最大限度地满足了分析预报工作的需要.每天 18时 30分我们都可以收到乌什台的 16时整点值数据,这为作出临震预报提供了至关重要的依据.例如,4月 14日 18时 30分收到乌什台应变 14日 16时的数据,0% 10时有一压应变突跳,幅度为 1.08 × 10 6,16时再次出现突跳,幅度为 7. % 10 7,表明进入了压 张交替变化的临震失稳阶段,我们于震前 10小时及时地作出了临震预报.
- (3)长达几年的趋势异常是大震发生的必要背景条件.乌什台 3.5年的应变趋势异常是伽师强震群预报的可靠依据.
 - (4) 分析人员长期稳定,并积累了大量经验,这对伽师地震预报显得十分重要.
- (5) 在这次伽师地震预报中,我们对 1月 21日 Ms 6. 2和 Ms 6. 4地震,1月 29日 Ms 5. 2地震以及 2月 12日 Ms 5. 3地震均没有作出预报.这几次地震前应变日均值无明显异常,但整点值图上异常很清楚.由于整点值数据是每月报送一次,二月上旬我们才收到一月份的数据,因此,未作出临震预报. 4月 17日,我们根据乌什台应变突跳,作出了一周内可能发生 6级地震的预报,但实际上没有发生地震,造成一次虚报.由此看来,没有压应变过程的单点突跳是不足以作为临震异常的依据的.因此,在今后的地震预报中,应及时收集整点值数据,在进行临震预报时,对于压应变过程的单点突跳应给以足够的重视.

PREDICTING THE STRONG EARTHQUAKE SWARM IN JIASHI OF XINJIANG UYGUR AUTONOMOUS REGION BY USING DRILL-HOLE STRAIN DATA

JIANG Jingxiang LAI Aijing HU Qun XU Yangang (Seismological Bureau of Xinjiang Uygur Autonomous Region, Urumqi 830011)

Abstract

In this paper, several examples of predicting the Jashi strong earthquake swarms in 1997 by using the drill-hole strain data are introduced and the primary characters of strain anomaly are analyzed. The results show that before the Jashi swarms the trend change curves of drill-hole strain at Wushi station 250 km from the epicenter departed from their normal pattern and the short-imminent strain values changed suddenly.

Key words Xinjiang, Strain observation, Earthquake prediction, Jiashi strong earthquake swarms