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ABSTRACT

Measured differential phase shift ΦDP is known to be a noisy unstable polarimetric radar variable, such
that the quality of ΦDP data has direct impact on specific differential phase shift KDP estimation, and
subsequently, the KDP-based rainfall estimation. Over the past decades, many ΦDP de-noising methods
have been developed; however, the de-noising effects in these methods and their impact on KDP-based
rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy ΦDP data were
generated and de-noised by using several methods such as finite-impulse response (FIR), Kalman, wavelet,
traditional mean, and median filters. The biases were compared between KDP from simulated and observed
ΦDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman,
and wavelet methods have a better de-noising effect than the traditional methods. After ΦDP was de-noised,
the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three
actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with ΦDP

de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h−1.
However, the improved estimation was not significant when the precipitation intensity further increased to
a rainfall rate beyond 10 mm h−1. The performance of wavelet analysis was found to be the most stable of
these filters.
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1. Introduction

Quantitative precipitation estimation (QPE) is
one of the most important applications for weather
radar. A comprehensive review of the reliability of
weather radar QPE products was conducted by Wil-
son and Brandes (1979), and it discussed in detail
the sources of uncertainty associated with radar-based
rainfall estimates. These include calibration, atten-
uation, anomalous propagation, bright band, beam
blockage, ground clutter, spurious returns, and ran-
dom errors. Moreover, the variability in the relation-
ship between reflectivity (Z) and rainfall rate (R) (Z–

R relations) was also discussed. Since that time, there
has been great progress in radar hardware and QPE
algorithms. Polarimetric radar can measure multi-
ple polarization parameters, including differential re-
flectivity ZDR, specific differential phase KDR, and
cross-correlation coefficient ρHV between two orthogo-
nal radar returns. ZDR reflects the median drop diam-
eter. KDR is immune to radar miscalibration, attenu-
ation in precipitation, and beam blockage, while ρDR

can significantly improve the radar data quality, dis-
tinguishing rain echoes from the radar signals caused
by other scatters such as snow, ground clutter, insects,
birds, chaff, etc. (Zrnic and Ryzhkov, 1996; Krajewski
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et al., 2010). In recent years, radar meteorologists
have paid more attention to the polarimetric radar and
its QPE products.

By combining a variety of polarization observa-
tional parameters, several QPE algorithms such as
R(ZH), R(ZH, ZDR), R(ZH, ZDR, KDP), and R(KDP)
have been investigated in the past decades (Bringi and
Chandrasekar, 2001; Liu et al., 2002; Brandes et al.,
2003; Ryzhkov et al., 2005; Hu et al., 2010). However,
since polarimetric variables are the difference between
horizontal and vertical polarization, their values are
one order of magnitude smaller than those measured
from only a single polarization direction. Moreover,
polarimetric variables are easily influenced by noise,
which needs to be removed before generating the po-
larimetric radar-derived rainfall estimation. For ex-
ample, Jameson (1991) and Ryzhkov and Zrnić (1995)
investigated the relationship between rainfall and po-
larimetric parameters. Their results indicated that
R(KDP, ZDR) was better relative to R(ZH), R(ZH,
ZDR), and R(KDP) for moderate to heavy rain rates,
however, KDP and ZDR needed to be smoothed for
greater accuracy of R(KDP, ZDR) relative to R(KDP).
Carey et al. (2000) developed a propagation correction
algorithm utilizing the differential propagation phase
(ΦDP) and tested this algorithm using experimental
data from the C-band polarimetric radar. Their re-
sult showed that the algorithm greatly reduced the
error of R(KDP, ZDR). Cifelli et al. (2011) presented
an optimization algorithm to estimate rainfall on the
basis of ZH, ZDR, and KDP, which performed better
in both tropical and extratropical regions. Moreover,
the US National Severe Storms Laboratory (NSSL)
conducted an operational demonstration for the po-
larimetric radar KOUN, and tested the reliability of
KOUN radar QPE for different seasons and rain types
using a large dataset. The hourly rain estimate er-
rors using polarimetric QPE were shown to decrease
significantly compared to the conventional nonpolari-
metric QPE (Ryzhkov et al., 2005). The US Na-
tional Weather Service (NWS) upgraded the Weather
Surveillance Radar-1988 Doppler (WSR-88D) network
with polarimetric capability in 2013.

The polarimetric parameter ZDR is easily influ-
enced by radar hardware such as the difference be-

tween the two orthogonal polarization directions of
antenna gains, rotary joints, waveguides, and receivers
(Melnikov et al., 2003). Thus, correction for ZDR sys-
tem bias is extremely complicated and a small error
of ZDR can possibly cause a large bias of ZDR-based
QPE. In addition, the reliability of ZDR-based QPE
is greatly affected by attenuation, especially for heavy
rainfall. KDP, which has been used more widely for po-
larimetric radar-derived QPE, is the slope of the ΦDP

profile and is noisy and unstable in measurement, es-
pecially for light rain. Thus, pretreatment of ΦDP is
crucial for KDP estimate quality (Liu et al., 2013).

In recent decades, many ΦDP de-noising meth-
ods have been developed for increasing the accuracy
of R(KDP). Sachidananda and Zrnić (1987) presented
an analysis of the accuracy of QPE from observed data
and a simulation procedure, which indicated that er-
rors caused by sidelobe contamination significantly af-
fect ΦDP data. As such, large scale averaging is re-
quired to obtain reasonably accurate rain rate esti-
mates. Chandrasekar et al. (1990) focused on the
error structure of KDP, and simulated random errors
in ZH, ZDR, and KDP, which suggested that R(KDP)
is stable and insensitive to system calibration.

As KDP is crucial in polarimetric radar-derived
rain estimates, radar meteorologists have for many
years investigated how to obtain accurate KDP data
from ΦDP. An iterative filtering technique has been
developed to estimate KDP, which can separate both
ΦDP and the differential backscatter phase shift δ from
complicated echoes (Hubbert et al., 1993; Hubbert and
Bringi, 1995). Ryzhkov and Zrnic (1996) presented an
algorithm that uses KDP exclusively, and suggested
that R(KDP) can be successfully applied to low rain
rates, however, the ΦDP fitting interval needs to be
adjusted. May et al. (1999) described a KDP esti-
mation algorithm, for which R(KDP) produces higher
quality data than R(ZH) for moderate to high rain
rates. Gorgucci et al. (1999, 2000) similarly described
an algorithm to correct bias in the estimation of KDP

in nonuniform rainfall paths and evaluated KDP-based
rainfall algorithms for different pathlengths. With the
development of polarization radar, and the recent ap-
plication of a new mathematical method, ΦDP and
KDP process methods are constantly developed. Wang
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and Chandrasekar (2009) presented a robust algorithm
to process ΦDP, which is able to remain in sync with
the spatial gradients of rainfall and produce a high-
resolution KDP.

Recently, an extended Kalman filter framework
was proposed, which determines rain-rate via a rela-
tionship between R, KDP, and ZDR (Schneebeli and
Berne, 2012; Grazioli et al., 2014). Vulpiani et al.
(2012) demonstrated that R(KDP) has a more seasonal
relationship than R(ZH), except for the analyzed win-
ter storm. To estimate high-resolution KDP, Hu et al.
(2012) developed an algorithm that can smoothen ΦDP

as well as a synthetic ZH/KDP-based rainfall estima-
tion method. They showed that the accuracy of R(ZH,
KDP) is higher than the traditional R(ZH) method
when the rain rate is larger than 5 mm h−1. Gian-
grande et al. (2013) presented an application of lin-
ear programming for physical retrievals, in order to
process measured ΦDP by developing realistic physi-
cal constraints for the monotonicity and polarimetric
radar self-consistency. Hu and Liu (2014) introduced
wavelet analysis into the ΦDP de-noising process and
further addressed a ΦDP penalty threshold strategy
based on the attribution of weather echoes.

A variety of ΦDP de-noising methods are used
extensively, yet there remains a lack of comprehen-
sive comparative analysis of these de-noising meth-
ods and their influences on KDP-based QPE. In the
present study, several new ΦDP de-noising methods
are introduced in Section 2. In Section 3, a simulated
noisy ΦDP profile is constructed and filtered with these
and other traditional methods. The bias is compared
where KDP is calculated from the simulated ΦDP with
various de-noising methods. In Section 4, an observed
ΦDP radial profile is selected as an example to deter-
mine the differences between raw and de-noised data.
In Section 5, KDP-based rainfall estimates are veri-
fied against rain gauge measurements to evaluate the
ability of the ΦDP de-noising methods. Finally, the
conclusions and discussion are given in Section 6.

2. Description of de-noising methods

With exception of the traditional running average
and median filter methods, a host of new algorithms

have also been applied into the ΦDP de-noising process.
The following three methods, finite-impulse response
filter (FIR), Kalman filter, and wavelet analysis, have
been proved effective in removing ΦDP noise.

2.1 Finite-impulse response filter

An FIR filter system function H(z) may be given
as follows,

H(z) =
m−1∑

n=0

bkZ−n, (1)

where coefficients b0, b1, · · · , bm−1 represent the sys-
tem unit impulse response h(0), h(1), · · · , h(m−1); n

is the time or the coordinates in space or distance, and
indicates the ordinal number of gates in a radar radial;
m is the filter window width, and here also refers to
the smoothing gate number in a radar radial. After a
signal x(n) is processed with FIR, the output y(n) is
shown as

y(n) = x(n)∗h(n), (2)

where “*” denotes the convolution. The FIR system
can be calculated from the following difference equa-
tion,

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) + · · ·

+bmx(n − m) =
m∑

k=0

bkx(n − k). (3)

Proakis and Manolakis (1988) used symmetric
20th-order associated coefficients in the complex vari-
able Z (Table 1). This method was used to smooth
the ΦDP radial profile for both the German Aerospace
Research Institute’s C-band radar and the NCAR CP-
2 radar (Hubbert et al., 1993; Hubbert and Bringi,
1995). In this study, the same coefficients in Table 1
were substituted into bk in Eq. (3) to smooth the ΦDP

radial profile.

2.2 Kalman filter

For the Kalman filter, the observational data are
regarded as an output from a state equation and the
least mean square error is used as an optimal estima-
tion criterion to estimate the state vector of the origi-
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Table 1. FIR filter coefficients

Z order Coefficient Z order

Z0 1.625807356e–2 Z−20

Z−1 2.230852545e–2 Z−19

Z−2 2.896372364e–2 Z−18

Z−3 3.595993808e–2 Z−17

Z−4 4.298744446e–2 Z−16

Z−5 4.971005447e–2 Z−15

Z−6 5.578764970e–2 Z−14

Z−7 6.089991897e–2 Z−13

Z−8 6.476934523e–2 Z−12

Z−9 6.718151185e–2 Z−11

Z−10 6.800100000e–2

nal system. We assume that random signals a and
V are defined as the process and measurement noises,
which are mutually independence white noises with
Gauss distributions of p(a) ∼ N(0,Q) and p(V ) ∼
N(0,S), respectively. Here Q and S are the covari-
ance matrixes. To remove the noise of ΦDP, the pro-

cess and measurement equations of the Kalman filter
are presented as (He et al., 2009)

X(r) = AX(r − 1) + Ba(r − 1), (4)

P (r) = CX(r) + V (r), (5)

X(r) =

[
ΦDP(r)
KDP(r)

]
, (6)

A =

[
1 r

0 r

]
, (7)

B =

[
r2/2
r

]
, (8)

C = [1 0], (9)

where the definitions of variables in Eqs. (4)–(9) are
listed in Table 2.

Table 2. Definition of the variables in Eqs. (4)–(9)

Variable Meaning

X(r) System state

P (r) Measured value

r At the distance r (unit: km)

A System matrix

B State transition matrix

C Measured matrix

a(r) Process noise, Gaussian distribution with zero mean and Q variance, i.e., p(a) ∼ N(0, Q)

V (r) Measurement noise, Gaussian distribution with zero mean and S variance, i.e., p(V ) ∼ N(0, S)

2.3 Wavelet analysis

Wavelet analysis can localize a signal in both the
time and frequency domains. It performs multi-scale
analysis using signal zoom and transform, in which
the information of signal is kept well. Thus, it has
rapidly become a significant technology in signal pro-
cessing. Hu and Liu (2014) employed this analysis to
remove the noise of ΦDP, and proposed a ΦDP process
strategy based on the weather echo attributions. The
wavelet de-noising process generally includes the fol-
lowing steps:

(1) Deconstruction: a signal is deconstructed into
approximate and detailed components of several levels
by a selected wavelet function.

(2) De-noising process: the coefficients of compo-
nents detailed in each level are suppressed by a selected

threshold strategy.
(3) Reconstruction: the signal is reconstructed by

approximation and using the processed detailed coef-
ficients with a selected threshold function.

Based on Hu and Liu (2014), in this study, the db5
wavelet function is used to deconstruct a signal into
five levels. The detailed coefficients are suppressed by
the ΦDP penalty threshold strategy, and the signal is
reconstructed by soft function.

3. Evaluation with a simulated ΦDP profile

To quantitatively compare the performance of
KDP when ΦDP is de-noised with alternative meth-
ods, a radar radial profile is simulated, which passes
through two convective cloud cells that were assumed
of a gamma drop size distribution (Ulbrich, 1983,
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Chandrasekar et al., 1990; Scarchilli et al., 1993) as
follows:

Nw(D) = N0D
µe−(3.67+µ)D/D0 , (10)

where Nw is the raindrop number for one unit volume
and size interval, D is the equivalent volume diameter
of raindrops (mm), N0 is the concentration parameter
which is assumed to be 8 × 103 mm−1 m−3, μ is the
distribution parameter (set to zero for this study), and
D0 is the median volume diameter, which is assumed
to have the following distribution,

D0(r) = Dmax exp

[
− 2 ln 2

(r − rmax/2
rmax

)2
]
, (11)

where Dmax represents the maximum equivalent di-
ameter of raindrops (assumed to be 0.2 cm); rmax is
the diameters of two cells, for which the first is set
to 30 km and the next 15 km; and r is the distance
of a raindrop from the center of each cell. We set
the radar wavelength to 5.6 cm and the gate width to
150 m. Therefore, there are 300 gate measurements
as the beam propagates through the simulated rain
area. Particle scattering is calculated using the ex-
tended boundary condition method which considers
the relationship between the drop size and the ellip-
ticity (Liu et al., 1989).

Figure 1 shows the simulated radar radial profiles
of ZH, ZDR, ΦDP, and KDP. The two symmetrical rain
cells are clearly evident in the profiles. As a result of
attenuation, the radial profile of ZH is not symmetric
to the center of the two convective cells. ZH values
behind the centers are obviously smaller than those
in front. The profile of ZDR reveals a similar behav-
ior, for the same reason. However, ΦDP is immune
to attenuation and the profile of ΦDP increases mono-
tonically from zero to 83.35◦. The KDP curve derived
from ΦDP shows symmetrical features for the two cells
and changes from 0.07◦ to 0.45◦ km−1, with similar
fluctuations in ZH and ZDR.

In order to simulate a measured ΦDP profile,
white noise with a signal to noise ratio (SNR) of 25
dB was added. Figure 2 shows the noisy ΦDP profile
and the de-noised profiles with mean filters (window

Fig. 1. The simulated radar radial profiles of ZH, ZDR,

ΦDP, and KDP.

widths of 7 and 13 points, respectively), median (7 and
13 points, respectively), FIR, Kalman, and wavelet
methods. The curves de-noised by the complicate FIR,
Kalman, and wavelet methods are obviously smoother
than those by the traditional mean and median meth-
ods. Namely, the FIR, Kalman, and wavelet methods
have better de-noised effects than do traditional meth-
ods.

Using the least squares fitting method, KDP is
estimated with 13 consecutive ΦDP in Fig. 2. The
corresponding KDP profiles are displayed in Fig. 3.
Due to the noise and the various de-noised methods,
the profiles of KDP fluctuate to varying degrees. The
maximum bias of KDP is 0.57◦ km−1 for the procedure
without any de-noising (Fig. 3a). After de-noising, the
maximum bias of KDP (Figs. 3b–h) is 0.44, 0.38, 0.46,
0.25, 0.20, 0.14, and 0.06◦ km−1, respectively. The
profiles of KDP filtered by FIR, Kalman, and wavelet
methods (Figs. 3g–h) are also found more similar to
the true KDP (Fig. 1) than the profiles filtered by the
traditional methods (Figs. 3b–e). In particular, the
wavelet method in Fig. 3h proves the most similar.

In order to quantitatively evaluate the ΦDP de-
noising effect on the KDP estimate, the mean absolute
error ε and mean relative bias d are defined as

ε =
1
G

G∑

n=1

|K ′
DP(n) − KDP(n)|, (12)



320 JOURNAL OF METEOROLOGICAL RESEARCH VOL.29

Fig. 2. The noisy ΦDP profile (a) and the de-noised profiles by (b) and (c) 7- and 13-point mean, (d) and (e) 7- and

13-point median, (f) FIR, (g) Kalman, and (h) wavelet filters, respectively.

d =
1
G

G∑

n=1

|K ′
DP(n) − KDP(n)|

KDP(n)
× 100%, (13)

where K ′
DP and KDP represent the fitting values in

Fig. 2 and the simulated value in Fig. 1, respectively,
n is the gate ordinal number, and G is 287, the total
number of fitted KDP, i.e., the total ΦDP gate number
of 300 minus a fitting width of 13.

The KDP mean absolute error and mean relative
bias results are listed in Table 3. Without de-noising,
ε (0.19) and d (78.40%) are the largest among those

listed in Table 3, indicating that all the methods se-
lected in this study de-noise KDP and more closely
represent the simulated KDP. The mean and median
filters with more window points are an improvement,
compared to those with fewer points. However, this
does not suggest that the more points the better. The
number of points of a window needs to be carefully se-
lected based on the balance between smoothness and
feature maintenance. The variables ε and d of FIR,
Kalman, and wavelet methods are smaller than those
generated by the traditional methods, with the error
from the wavelet method the smallest.
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Fig. 3. The KDP profile of (a) without de-noising, and with (b) 7- and (c) 13-point mean, (d) 7- and (e) 13-point

median, (f) FIR, (g) Kalman, and (h) wavelet filters.

Table 3. The KDP mean absolute error and mean relative bias of each de-noising method

Methods Noise Mean 7 Mean 13 Median 7 Median 13 FIR Kalman Wavelet

ε 0.19 0.13 0.08 0.14 0.10 0.07 0.08 0.03

d (%) 78.40 54.30 37.36 63.37 43.65 32.72 33.92 12.45

4. Comparison with real ΦDP radial profile

The following representative real ΦDP radial pro-
file at 0.5◦ elevation and 62.0◦ azimuth was detected
with the mobile C-band dual polarimetric weather
radar (POLC), which transmitted and received hori-
zontal and vertical polarization signals simultaneously,

at 0804 BT (Beijing Time) 25 June 2013 in Dingyuan,
Anhui Province. The main characteristics of the radar,
which operated at a frequency of 5.43 GHz and a 150-
m gate width, are summarized in Table 4.

Figure 4 shows the profiles of raw data and de-
noised ΦDP data from the previously mentioned meth-
ods. The corresponding KDP are displayed in Fig. 5.
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Table 4. Main characteristics of POLC radar

Parameter Value

Antenna diameter 3.2 m

Gain 40 dB

Beam width 1.2◦

First side lobe < –25 dB

Isolation > 40 dB

Wavelength 5.5 cm

Pulse width 1.0/0.5 μs

Peak power � 250 kW

PRF 300–1200 Hz

Polarization Horizontal and vertical

Minimum detectable signal � –109 dBm

Receiver noise figure � 3.0 dB

Receiver dynamic range > 85 dB

Observation range 150 km

Note that the scale of y-axis in Fig. 5a is 10 times
larger than in Figs. 5b–h. Hence, the KDP errors
are very large if ΦDP data are not preprocessed be-
fore KDP fitting. KDP derived by the Kalman method
(Fig. 5g) is smoother than by other methods, which
implies that more detailed spatial features may be lost
by the de-noise procedure. The FIR method (Fig. 5f)
exhibits an evident boundary effect, which will influ-
ence the KDP values at the echo boundaries. In ad-
dition, the traditional mean and median methods are
less smooth. The wavelet analysis, on the other hand,
is sufficiently smooth, and at the same time preserves
enough detail information of weather echo, which helps

Fig. 4. As in Fig. 2, but for raw ΦDP data at 0.5◦ elevation and 62.0◦ azimuth detected at 0804 BT 25 June 2013 in

Dingyuan, Anhui Province.
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Fig. 5. As in Fig. 3, but the KDP profiles were obtained by using the ΦDP data in Fig. 4. Note that the scale of y-axis

in (a) is 10 times larger than others.

effectively locate the strong convection and precipita-
tion. Figure 6 is the corresponding plan position indi-
cators (PPIs) of ZH and ΦDP, and Fig. 7 is the KDP

PPIs corresponding to Fig. 4. KDP noise in Fig. 7a
is decreased by the ΦDP de-noising (Figs. 7b–h). The
KDP PPIs of traditional mean and median methods
(Figs. 7b–e) barely differ from the visual views. The
FIR, Kalman, and wavelet methods (Figs. 7f–h) are
relatively smooth compared to the traditional meth-
ods, yet the Kalman method (Fig. 7g) is too smooth
for KDP to locate the strong echoes that are easily

seen in ZH (Fig. 6a) and other KDP PPIs. For exam-
ple, in Fig. 4, the average reflectivity is 42.15 dBZ in
the strong echo area from gates 183 to 352, and the
average value 1.17◦ km−1 of KDP using the Kalman
method is the smallest (Table 5).

5. QPE results of three real cases

In order to further verify the influence on KDP-
based rainfall estimation, three large-scale rainfall pro-
cesses during 0200–0800 BT 25 June, 0900–1700 BT
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Fig. 6. (a) ZH (dBZ) and (b) ΦDP (deg) PPIs observed at 0.5◦ elevation and 62.0◦ azimuth detected at 0804 BT 25

June 2013 in Dingyuan, Anhui Province. The red line denotes location of the radial profile in Fig. 4. Range rings are

30-km apart.

Fig. 7. KDP PPIs fitted by (a) raw ΦDP in Fig. 6b, and (b–h) de-noised ΦDP.

Table 5. Average values of ZH, raw KDP, and KDP de-noised with various methods in the strong echo area

from gate 183 to 352

Average Average KDP (◦ km−1)

ZH (dBZ) Raw Mean 7 Mean 13 Median 7 Median 13 FIR Kalman Wavelet

42.15 1.39 1.40 1.40 1.43 1.43 1.27 1.17 1.39

5 July, and 0900–1700 BT 7 July 2013 are analyzed,
and their ΦDP values are de-noised with various meth-
ods. The hourly rainfall is measured by 160 rain
gauges around the radar within 70 km. ZH is pre-
processed by attenuation correction (Hu et al., 2012),

and the ZH-based QPE equation is taken as

⎧
⎨

⎩
ZH = 200R1.6

r , ZH � 37 dBZ

ZH = 300R1.4
r , ZH > 37 dBZ

, (14)
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and the KDP-based QPE equation is (Liu et al., 2002):

Rr = 28.76K0.779
DP . (15)

In order to analyze the accuracy of QPE, the normal-
ized error (NE) is defined as

NE =

1
M

M∑
i=1

|Rr − Rg|
1
M

M∑
i=1

Rg

× 100%, (16)

where Rr and Rg represent radar estimated and gauge
measured rainfall, respectively, and M represents the
number of qualified data pairs when both the esti-
mated and measured rainfall are larger than 0.0 mm.

The normalized errors (NEs) of R(ZH) and
R(KDP) are listed in Table 6, in which <Rg> rep-
resents the average rainfall measured with all gauges,
and the bold numbers indicate the minimum NE of
R(KDP) with different de-noising methods. As ex-
pected R(ZH) is the best estimator when all data pairs
are statistically counted, regardless of rainfall intensity

(Hu et al., 2010, 2012). When only Rg values greater
than 5, 10, 15 mm h−1 are considered, the advantage of
KDP-based estimation is evident: the heavier the pre-
cipitation, the higher the accuracy of KDP-based QPE.
The SNR of the echo signal increases with greater rain-
fall, and the quality of the KDP data improves rapidly.
Even without any pretreatment, the KDP-based esti-
mates have improved 10.61% (49.09% minus 38.48%)
and 19.85% (51.88% minus 32.03%), in comparison to
ZH-based methods, when the average rainfall is heav-
ier than 10 and 15 mm h−1 in Table 6, respectively.
In Table 6, the wavelet method is the best of these de-
noising methods. When the average rainfall is larger
than 5 mm h−1, after de-noising, the NE of R(KDP)
decreases from 55.41% (raw KDP-based estimates) to
a minimum of 36.30% (Kalman method), i.e., the NE
of R(KDP) has improved from –7.43% to 11.68% of
R(ZH). In addition, the filter window widths, i.e., 7
or 13 points of ΦDP, of traditional mean and median
filters seem to have little influence on the results of
KDP-based QPE in all three cases.

Table 6. Normalized errors (NEs) of ZH- and KDP-based rainfall estimation with raw and various de-noising

methods

Rain rate Data pair <Rg> NE (%)

(mm h−1) number mm h−1 R(ZH) Raw Mean 7 Mean 13 Median 7 Median 13 FIR Kalman Wavelet

>0 2483 5.06 104.88 2934.00 651.78 736.56 768.88 695.98 588.27 429.21 1050.21

>5 780 14.02 47.98 55.41 41.48 40.35 43.40 42.52 36.48 36.30 37.81

>10 428 19.57 49.09 38.48 31.98 30.54 33.89 32.32 31.39 31.31 30.42

>15 255 25.29 51.88 32.03 29.63 29.70 30.64 31.05 31.05 30.84 29.57

6. Discussion and summary

Since the polarimetric variable is one order of
magnitude smaller than those measured from a polar-
ization direction, they are easily influenced by noise.
This is particularly the case in low SNR conditions for
which the useful echo information is always submerged
in noise. As KDP is one of the polarization param-
eters, how ΦDP measurements are processed and ob-
taining better KDP will directly influence the accuracy
of KDP-based QPE. In recent decades, many types of
ΦDP preprocessing methods have been employed; how-
ever, the specific effects of these de-noising methods
and KDP-based QPE are yet to undergo comprehen-

sive comparative analysis.
In this paper, the ΦDP filtering effect with var-

ious common methods is assessed and compared by
using numerical simulation, and finally demonstrated
by real ΦDP radial. The KDP-based rainfall estimates
are also evaluated by refitting KDP to further analyze
the influence of the different ΦDP de-noising methods.

ΦDP de-noising clearly reduced the errors of
R(KDP), with the improvement more obvious when
ΦDP de-noising used the more complicated Kalman,
FIR, and wavelet methods, and the rainfalls were heav-
ier than 5 mm h−1. However, for heavier precipita-
tion (R > 10 mm h−1), with an increased SNR, the
differences between these methods are not significant.
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Therefore, for strong precipitation, the filtering
method is not the primary consideration. Since the ef-
ficiency of the complicated Kalman, FIR, and wavelet
methods is significantly lower than that of the tradi-
tional methods for different precipitation types and
rain rates, an efficient ΦDP de-noising program needs
to be deliberately designed. For instance, the thresh-
old value of average ZH in a radial can be set to
determine whether the radial data are de-noised with
fast traditional methods or more complicated ones.

In addition, it is found that the filter window
width of traditional filters on ΦDP had less impact
on KDP-based QPE in the three large-scale rainfall
processes. In other words, if the rain rate is greater
than 10 mm h−1, these de-noising methods are basi-
cally similar. Overall, the performance of the wavelet
method is better than other methods. Nonetheless,
these results need to be appropriately verified with
more observational data, especially for convective
cloud rainfall processes.

It has been found that the value of KDP is less rep-
resentative than those of ZH and ZDR, as KDP is fitted
by a number of gates over a gauge, and ZH and ZDR

are detected only over a gate width. As such, the accu-
racy of ZH- and ZDR-based rainfall estimations should
be higher than the KDP-based estimation. Aside from
the algorithm and radar system errors, precipitation is
a complex dynamic, thermodynamic, and microphys-
ical process. Due to the air flow, time and space are
needed before the echoes detected by radar are trans-
formed into rainfall measured with ground gauges.
The results in this paper further suggest that the ac-
curacy of KDP-based rainfall estimation is higher than
the ZH-based estimation for heavy rainfall (R > 10
mm h−1), and that after ΦDP de-noising, the accuracy
of KDP-based QPE is more accurate than ZH-based
QPE, even for light to moderate rain (R > 5 mm h−1).
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He Yuxiang, Lü Daren, Xiao Hui, et al., 2009: Atten-

uation correction of reflectivity for X-band dual

polarization radar. Chinese J. Atmos. Sci., 33,

1027–1037. (in Chinese)

Hu Zhiqun, Liu Liping, Chu Rongzhong, et al., 2010:

Study of different attenuation correction methods in

association with rainfall estimation for X-band po-

larimetric radars. Acta Meteor. Sinica, 24, 602–613.

Hu Zhiqun, Liu Liping, and Wang Lirong, 2012: A quality

assurance procedure and evaluation of rainfall esti-

mates for C-band polarimetric radar. Adv. Atmos.

Sci., 29, 144–156.



NO.2 HU Zhiqun, LIU Liping, WU Linlin, et al. 327

Hu Zhiqun and Liu Liping, 2014: Applications of wavelet

analysis in differential propagation phase shift data

de-noising. Adv. Atmos. Sci., 31, 825–835.

Hubbert, J. V., V. Chandrasekar, V. N. Bringi, et

al., 1993: Processing and interpretation of coher-

ent dual-polarized radar measurements. J. Atmos.

Oceanic Technol., 10, 155–164.

Hubbert, J. V., and V. N. Bringi, 1995: An iterative filter-

ing technique for the analysis of copolar differential

phase and dual-frequency radar measurements. J.

Atmos. Oceanic Technol., 12, 643–648.

Jameson, A. R., 1991: Polarization radar measurements

in rain at 5 and 9 GHz. J. Appl. Meteor., 30, 1500–

1513.

Krajewski, W. F., G. Villarini, and J. A. Smith, 2010:

Radar-rainfall uncertainties. Bull. Amer. Meteor.

Soc., 91, 87–94.

Liu Liping, Xu Baoxiang, and Cai Qiming, 1989: The

effects of attenuation by precipitation and sampling

error on measuring accuracy of 713 type dual linear

polarization radar. Plateau Meteorology, 8, 181–188.

(in Chinese)

Liu Liping, Ge Renshen, and Zhang Peiyuan, 2002: A

study of method and accuracy of rainfall rate and

liquid water content measurements by dual linear

polarization Doppler radar. Chinese J. Atmos. Sci.,

26, 709–720. (in Chinese)

Liu, L. P., G. L. Wang, Z. Q. Hu, et al., 2013: Multi-

ple Radar Integration Technology and Application

to Heavy Rainfall Monitoring in Southern China.

China Meteorological Press, Beijing, 92–104. (in

Chinese)

May, P., T. D. Keecnan, D. Zrnic, et al., 1999: Polari-

metric radar measurements of tropical rain at 5-cm

wavelength. J. Appl. Meteor., 38, 750–765.

Melnikov, V. M., D. S. Zrnic, R. J. Doviak, et al., 2003:

Calibration and Performance Analysis Of NSSL’s

Polarimetric WSR-88D. NOAA/NSSL Rep., 77 pp.

Proakis, J. G., and D. G. Manolakis, 1988: Introduction

to Digital Signal Processing. Macmillan Publishing

Co., 944 pp.

Ryzhkov, A. V., and D. S. Zrnić, 1995: Comparison of
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