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Fig. 7 Experimental platform
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Reconstruction algorithm for acoustic measurement of velocity
field of deep-sea hydrothermal vents

BAI Yan®, MAO Jie', FAN Wei', PAN Hua-chen, LIU Yun-feng®

(1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2. Key Laboratory
of Special Purpose Equipment and Advanced Processing Technology of Ministry of Education, Zhejiang University
of Technology, Hangzhou 310032, China)

Received: Mar., 15, 2010
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Abstract: The basic theory of acoustic velocity field measurement in deep-sea hydrothermal vents was introduced.
The time of flight (TOF) of acoustic signals through hydrothermal vents was dependent on temperature and velocity.
The velocity field was reconstructed by inverse problem solving techniques based on the relationship between the
round-trip TOF difference and velocity of flow. The reconstruction of velocity field using the least square method
was presented. At the same time, flow flux of reconstruction results was analyzed. The results show that the least
square method has good accuracy. Increase of the number of acoustic transducers and mesh density can improve the
reconstruction accuracy effectively.
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Genetic diversity analyses of wild and cultured Pseudobagrus
ussuriensis populations

XU Han-fu, HUANG He-zhong, FAN Wan-su, HE Hua-min, JIA Yi-he

(School of Medicine and Life Sciences, Medical College of Soochow University, Fisheries Research Institute of
Soochow University, Suzhou 215123, China)

Received: Jun., 26, 2009
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Abstract: The sequence-related amplified polymorphism (SRAP) molecular marker technique was used to compare
genetic structures of three populations (one wild and two cultured) of Pseudobagrus ussuriensis. Samples of wild
population were collected from Jiangsu Hongze Lake and the two cultured populations from Fisheries Research
Institute of Huaian (F2 generation) and Suzhou Dongshan Aquatic Breeding Plants (F3 generation). Twelve pairs of
SRAP primers were selected from 100 primer combinations. Two hundred and two amplified loci were obtained
from the three populations, among which 130 were polymorphic. The percentage of polyrnorphic loci in the Hongze
Lake (HL) population, Huaian populations (HA), Suzhou Dongshan populations (SZ) was 63.13%, 56.54% or
54.88%, respectively. The results indicated that genetic polyrnorphism decreased in two cultured populations. The
Nei’s gene diversity of three populations was 0.2641, 0.2546 or 0.2469, respectively; the Shannon’s Information
index of three populations was 0.4118, 0.4050 or 0.3861, respectively. The genetic distance between wild popula-
tion and two cultured ones were 0.1730 and 0.1104, while the genetic distance between two cultured ones was
0.1087. The noticeable decrease in the number of rare loci and the increase in the number of homozygous recessive
loci in the cultured population suggested a considerable loss of low frequency alleles in the cultured populations,
which might have resulted from small effective population sizes during artificial seed production. In the future P.
ussuriensis artificial propagation should be chosen to large sufficiently and representative parent groups to maintain
the good traits to retain maximum genetic diversity.
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