文章编号:1009-3850(2011)04-0070-09

内蒙古北部乌日尼图地区阿仁绍布辉长岩体的 形成时代、地球化学特征及成因

贺宏云 鞠文信 宝音乌力吉

(内蒙古自治区地质调查院,内蒙古 呼和浩特 010020)

摘要:本文系统地报道了内蒙古北部乌日尼图地区阿仁绍布辉长岩的主量元素、微量元素和稀土元素特征,重点讨论了阿仁绍布辉长岩体的岩石成因、原始岩浆的源区特征及其地质意义。研究结果表明,阿仁绍布辉长岩体 SiO₂ 含量为49.62%,Al₂O₃为17.34%,CaO为8.94%,TiO₂为1.44%,P₂O₅为0.26%;岩石富集 LILE、亏损 HFSE。岩体的 Mg#值(0.28~0.68,平均为0.52)较高,反映原始岩浆具幔源原生玄武岩浆特征,在上升过程中经历的结晶分异程度较低。U-Pb 锆石年龄测定结果为 309 ± 2Ma,代表了阿仁绍布辉长岩体的结晶年龄,为晚石炭世。计算出石英结晶温度为 928℃,斜长石结晶温度为 1206℃;岩浆冷凝矿物共结晶时的深度大于 10km,其结晶条件代表岩体侵位时的物理环境,是在较深的岩浆房中结晶的。阿仁绍布辉长岩具有大陆边缘弧的地球化学特征,可能反映在岩浆形成之前,地幔源区发生了俯冲交代富集作用。

关 键 词: 岩石成因; 锆石 U-Pb 定年; 辉长岩; 阿仁绍布; 内蒙古北部 中图分类号: P588.12⁺4 文献标识码: A

1 引言

内蒙古北部乌日尼图地区位于西伯利亚板块 与华北板块对接带以北西伯利亚板块东南缘二连 浩特-东乌旗北东向岩浆岩带上^[1]。研究区出露大 量的侵入岩,但由于自然条件恶劣,前人工作程度 很低。笔者在开展1:5万乌日尼图幅 (L49E020016)等五幅区域地质调查工作中,通过细 致的野外观测和系统的样品分析,应用单颗粒锆石 U-Pb 法对阿仁绍布侵入岩中的辉长岩体进行了同 位素地质年代学测定,并结合岩石化学、地球化学 分析结果,对阿仁绍布辉长岩的形成环境进行了 讨论。

2 地质概况及岩石学特征

阿仁绍布侵入岩体区内出露一个多次侵入的 复式岩体(图1),其呈北东-北北东向展布,不规则 椭圆状,总面积为154km²;岩体侵入泥鳅河组,并被 早二叠世钾长花岗岩等侵入。岩性总体上由中性 向酸性演化,依次为:细粒角闪辉长岩→灰色细粒 闪长岩→灰色细粒石英闪长岩→灰白色细粒黑云 母花岗闪长岩→浅灰色糜棱岩化角闪石英二长岩 →中细粒黑云母二长花岗岩→中粒黑云母二长花 岗岩→灰白色中细粒(文象)花岗岩;结构特征总体 由细粒向粗粒演化。

阿仁绍布辉长岩($C_2\psi\nu$)位于研究区北部赛仁 棚一带,该岩体呈不规则的椭圆形,出露面积约0.5 km^2 。主要由斜长石、角闪石、辉石组成,含少量柱 状磷灰石、磁铁矿。岩石为细粒结构,块状构造。 其主要造岩矿物为斜长石、辉石、角闪石,其中:斜 长石,粒度0.5~1.5mm,自形-半自形长板状,大部 分被黝帘石、绢云母交代,蚀变强烈,呈云雾状,原 矿物为拉长石;褐色角闪石,粒度1~2mm,柱状,内 部有柱状磷灰石和细粒磁铁矿包体,局部绿泥石化、

收稿日期: 2010-12-03; 改回日期: 2011-08-03

作者简介: 贺宏云(1966-) , 男 ,高级工程师 ,主要从事区域地质工作。E-mail: 172803207@ qq. com

图1 研究区侵入岩分布图

 早二叠世中细粒二长花岗岩; 2. 早二叠世中粒白云母正长花岗岩; 3. 早二叠世文象钾长花岗斑岩; 4. 早二叠世中粒黑云母钾长花岗岩; 5. 早 二叠世细粒文象钾长花岗岩; 6. 早二叠世中粒正长花岗岩; 7. 早二叠世细(中) 粒正长花岗岩; 8. 早二叠世中粒黑云母二长花岗岩; 9. 早二叠世 细粒斑状黑云母二长花岗岩; 10. 早二叠世中粒黑云母花岗闪长岩; 11. 早二叠世细粒黑云母花岗闪长岩; 12. 早二叠世石英二长闪长岩; 13. 晚 石炭世黑云母花岗闪长斑岩; 14. 晚石炭世糜棱岩化角闪石英二长岩; 15. 晚石炭世蚀变细粒角闪辉长岩; 16. 晚石炭世中细粒黑云母文象花岗 岩; 17. 晚石炭世中粒黑云母二长花岗岩; 18. 晚石炭世细粒黑云母二长花岗岩; 19 晚石炭世细粒黑云母花岗闪长岩; 20. 晚石炭世石英闪长岩; 21. 晚石炭世闪长岩; 22. 断层; 23. 糜棱岩(带)

Fig. 1 Distribution of the intrusive rocks in the study area

1 = Early Permian medium- to fine-grained adamellite; 2 = Early Permian medium-grained muscovite syenogranite; 3 = Early Permian graphic K-feldspar granite porphyry; 4 = Early Permian medium-grained biotite moyite; 5 = Early Permian fine-grained graphic moyite; 6 = Early Permian medium-grained syenogranite; 7 = Early Permian fine-(medium-) grained syenogranite; 8 = Early Permian medium-grained biotite adamellite; 9 = Early Permian fine-grained porphyritic biotite adamellite; 10 = Early Permian medium-grained biotite granodiorite; 11 = Early Permian fine-grained biotite granodiorite; 12 = Early Permian quartz monzodiorite; 13 = Late Carboniferous biotite granodiorite granite; 16 = Late Carboniferous medium- to fine-grained biotite graphic granite; 17 = Late Carboniferous medium-grained biotite adamellite; 18 = Late Carboniferous fine-grained biotite adamellite; 19 = Late Carboniferous fine-grained biotite adamellite; 20 = Late Carboniferous fine-grained biotite adamellite; 21 = Late Carboniferous fine-grained biotite adamellite; 22 = fault; 23 = mylonite belt

次闪石化; 辉石呈粒状。矿物含量: 斜长石强蚀变 云雾状 60~65%;角闪石及辉石 35~40%;次生石 英、磁铁矿少量;磷灰石微量。主要副矿物为锆石、 磷灰石,其余副矿物微量(表1)。副矿物组合类型 为锆石+磷灰石型。锆石标型特征(表2):浅黄色, 透明,金刚光泽,性脆,断口不平坦,含大量浅黄色 质点状包裹物。少量晶形锥部(111)面发育或较发 育,大部分晶形(311)、(131)晶面发育,(111)面不 发育或缺失;柱面(110) 很发育而(100) 很不发育 育。两锥之和长大多大于柱长,许多晶形锆石的柱 很不发育,长比宽多为2:1.5,少量接近1:1。

表 1 灰色细粒角闪辉长岩副矿物种类及含量一览表 Table 1 Types and contents of accessory minerals in grey fine-grained bojite

仲見	长口口	- با مار با با		矿物名称(备;	注: 单位为g/t, 1	×者为微量)	
10.5	47 nn 75	石性	锆石	褐铁矿	磁铁矿	磷灰石	钛磁铁矿
С2 ΨV	RZ3299	灰色细粒角闪辉长岩	47.3	×	×	121.5	×

表 2 灰色细粒角闪辉长岩锆石晶形特征表

Table 2 Crystal forms of zircon from grey fine-grained bojite

仲早	转音	111 MF		4	告石特征	她工具形体知		
10.5	17 5	石注	颜色	透明度	长 (mm)	长:宽	南石面尼村位	
C ₂ ψ v	RZ3299	灰色细粒角闪 辉长岩	浅黄色	透明	0.1~0.85,	2:1.5或1:1	111)20 110 110 110 110 110 110 110 110 110 1	

表 3 灰色细粒角闪辉长岩同位素年龄表

 Table 3
 Isotopic ages for grey fine-grained bojite

_E 🗆	浓度(µg∕g)		同位素原子比率		表面年龄值(Ma)				
尽 与	Pb	U	206 Pb / 238 U	$^{207} \mathrm{Pb} / ^{235} \mathrm{U}$	$^{207}{\rm Pb}/^{206}{\rm Pb}$	$^{206} \mathrm{Pb} / ^{238} \mathrm{U}$	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	$^{207}{\rm Pb}/^{206}{\rm Pb}$		
1	16	222	0.0491	0.3583	0.0529	309	311	326		
2	8	102	0.0489	0.3623	0.0537	308	314	360		
3	12	165	0.0492	0.3486	0.0514	309	304	261		
4	8	122	0.0489	0.3572	0.0530	308	310	329		
5	8	106	0.0495	0.3485	0.0511	311	304	245		
6	11	139	0.0503	0.3571	0.0515	316	310	262		
7	13	194	0.0489	0.3404	0.0496	313	298	176		
8	8	97	0.0485	0.3481	0.0521	305	303	289		
9	7	103	0.0499	0.3525	0.0513	314	307	252		
10	5	73	0.0479	0.3531	0.0534	302	307	347		
11	4	61	0.0493	0.3632	0.0534	310	315	346		
12	8	106	0.0493	0.3484	0.0513	310	304	254		
13	4	51	0.0492	0.3597	0.0530	310	312	328		
14	7	81	0.0500	0.3620	0.0525	315	314	307		
15	3	45	0.0493	0.3398	0.0500	310	297	196		
16	4	52	0.0487	0.3554	0.0529	306	309	326		
17	4	56	0.0490	0.3560	0.0527	308	309	315		
18	11	182	0.0484	0.3629	0.0544	305	314	388		
19	10	124	0.0480	0.3593	0.0543	302	312	383		
20	12	167	0.0491	0.3497	0.0517	309	304	270		

3 样品和分析方法

对野外采集的样品经过薄片鉴定后,选择新鲜的样品经无污染碎样后进行地球化学元素分析。

主量、微量和稀土元素均在天津地质矿产研究所完成。其中主量元素采用 XRF-1500 测定,分析精度 一般优于2~3%;微量元素和稀土元素是用 Teflon 熔样罐进行熔样,然后采用 Finnigan MAT 公司生产 2011 年(4)

的双聚焦高分辨 ICP-MS 进行测定 检测优于 0.5 × 10°相对标准偏差优于5%。

年代测定由天津地质矿产研究所采用微量锆 石 U-Pb 法定年技术对锆石样品进行测定,测试中 使用²⁰⁸Pb - 235 U 混合稀释剂 ,质谱分析在 VG354 上 完成。Pb 和 U 的全流程本底分别为 m (Pb) = 0. 05 ng 及 m (U) = 0.002 ng。详细的分析方法见李

惠民等(1997)^[2]。

岩石形成时代 4

对辉长岩 TW3299 样品单颗粒锆石 U-Pb 同位 素测年结果见表 3 年龄值为 309 ± 2Ma(图 2) 其可 能代表了该辉长岩体的结晶年龄,时代属于晚石 炭世。

1、表中所列误差均为1σ误差

2、1-20 号点 206Pb/238U 表面年龄加权平均值(Mean) 为 309 ± 2Ma, 可信度为 95%; MSWD = 0.5 概率 = 0.96

- 3、测试单位:天津地质矿产研究所同位素地质实验室
- 4、测试时间:2009年
- 5、测试方法: 单颗粒锆石 U-Pb 法

地球化学特征 5

5.1 主量元素

岩石主量元素含量及主要参数见表4。

阿仁绍布辉长岩 SiO₂ 含量(wt%)为49.62%, Al₂O₃ 含量为 17.34% ,主要标准矿物组合为 or + ab + an + wo + di + fa + mt 型,为硅低度不饱和岩石。 A/CNK = 0.74 < 1.1 属 Chappell 和 White(1974)^[3] 分类的"Ι"型花岗岩; 里特曼指数(σ) 为 3.64, K2O < Na2O 属弱钙碱性岩系,碱度率(A.R)为1. 46 NK/A 为 0.42 < 0.9 ,为钙碱性岩系^[4];在 QAPF 图解(图3)中,样品TW3299投点落在二长辉长岩 区(9区)。分异指数(DI)为38.54、固结指数(SI) 35.45、镁铁指数(MF)为53.94 揭示岩浆分离结晶 作用程度弱。岩体的 Mg^{*} 值(0.42) 较高 ,反映原始 岩浆具幔源原生玄武岩浆特征,在上升过程中经历 的结晶分异程度较低。

5.2 稀土元素

岩石的稀土元素丰度及特征参数见表 5。稀土 总量(ΣREE)为152.52×10⁶,偏高,轻重稀土比值 (ΣCe/ΣY)为 2.36, (La/Yb)N为 4.64,大于 1, (La/Sm) N为 3.43,揭示轻稀土富集,分馏明显; (Gd/Yb)_№值为 1.62,重稀土分馏程度弱。δEu 为 0.96 基本不亏损。稀土配分曲线(图4) 微右倾 但 总体平坦。

图 3 晚石炭世侵入岩岩石 Q-A-P-F 分类命名图解(after Le Maitre ,1989) [5]

1. 中粒黑云母二长花岗岩; 2. 细粒黑云母二长花岗岩; 3. 细粒黑云母 花岗闪长岩;4.细粒闪长岩;5.细粒石英闪长岩;6.细粒角闪辉长岩; 7. 角闪石英二长岩; 8. 黑云母花岗闪长斑岩

Fig. 3 Q-A-P-F diagram for the Late Carboniferous intrusive rocks (after Streckeisen 1973; Le Maitre, 1989)

1 = medium-grained biotite adamellite; 2 = fine-grained biotite adamellite; 3 = fine-grained biotite granodiorite; 4 = fine-grained diorite; 5 = fine-grained quartz diorite; 6 = fine-grained bojite; 7 = amphibole adamellite; 8 = biotite granodioritic porphyry. Q = quartz; A = alkaline feldspar; P = plagioclase; 1a = quartzolite; 1b = quartz-rich granite; 2 = alkaline granite; 3a = granite(syenogranite); 3b = adamellite; 4 = granodiorite; 5 = tonalite; 6* -6 = alkaline feldspar syenite; 7 * 7 = syenite; 8 * 8 = monzonite; 9* 9 = monzodiorite and monzogabbro; 10* 10 = diorite, gabbro and anorthosite. QA line represents alkaline granite; QP line represents oceanic-island plagiogranite

Table 4 Petrochemical compositions and relevant parameters for the Late Carboniferous intrusive rocks

时		填图单元				44		氧化物原始重量(%)												
代	代号		岩石	名称		作	5	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	烧失量	Σ
	C S	國二	151-77: H		BR HA	PM003	GS22	72.39	0.27	13.72	1.09	1.24	0.055	0.56	1.41	4.56	3.69	0.13	0.82	99.93
	02 γ ο π	まム	母化区	四天	如石 -	PM003GS9		68.93	0.48	14.65	1.44	1.53	0.074	1.4	2.5	4.12	3.76	0.12	0.89	99.89
	$C_2 \gamma \beta^{zz}$	中细	粒黑z	(母花)	岗岩	GS23	397	77.51	0.1	11.24	0.64	0.51	0.033	0.17	0.43	3.79	4.34	0.028	0.46	99.25
中	C2 104	角	闪石英	三长岩	岩	GS20	050	76.99	0.14	12.21	0.48	0.7	0.025	0.32	1.04	3.58	4.02	0.081	0.92	100.5
石	C S Q ³	1	细粒黑	云母		GS23	308	73.77	0.21	12.79	0.95	0.78	0.038	0.51	1.23	4.23	3.97	0.058	0.94	99.48
炭	C2 70 p	3	花岗闪	长岩		PM003	GS14	73.43	0.21	13.33	1.02	0.39	0.031	0.34	1.07	4.36	4.22	0.045	0.77	99.22
世	C2 80"	细	粒石英	阿长着	昔	GS30	086	69.9	0.39	14.63	1.26	1.35	0.058	0.94	2.03	4.21	3.36	0.1	1.66	99.89
	C ₂ δ	细粒闪长型				PM002	GS1	64.31	0.69	15.06	2.05	2.2	0.042	2.49	1.7	6.41	1.11	0.19	3.18	99.43
		细粒内认有			Γ	PM003	GS29	64.98	0.38	17.04	1.82	1.03	0.062	0.76	1.16	8.4	2.86	0.19	1.2	99.88
	$C_2 \psi v$	细	粒角闪]辉长岩	台	GS32	299	49.62	1.44	17.34	2.27	5.88	0.15	6.96	8.94	3.4	1.51	0.26	2.17	99.94
		-			A new York Mark and a second sec															
	样 号	主要标准矿物()					(里)	重%)			i s									
		Q	An	Ab	Or	С	Di	Ну	п	Mt	Ap	σ	A.R	DI	SI	FL	MF	A/CN	K NK/	A Mg"
PM	1003GS22	30.89	3.82	35.74	21.8	1.41	0	2.49	0.51	1.55	0.31	2.32	3.4	88.92	5.03	85.4		0.98	0.84	0.45
PN	4003GS9	26.83	9.96	30.38	22 3	1 06	0				1	C 1	-	-						
(20120		1.00	0	4.79	0.91	1.91	0.29	2.39	2.7	81.04	11.43	75.92	67.96	0.95	0.74	0.62
1	GS2397	42.97	0	25.72	25.69	1.55	0	4.79 0.59	0.91	1.91 0.77	0.29	2.39 1.92	2.7 4.71	81.04 96.64	11.43 1.8	75.92 94.98	67.96 87.12	0.95	0.74	0.62
	GS2397 GS2050	42.97 37.99	0 4.86	25.72 30.4	25.69	0.2	0	4.79 0.59 1.51	0.91 0.19 0.27	1.91 0.77 0.7	0.29 0.07 0.19	2.39 1.92 1.7	2.7 4.71 3.35	81.04 96.64 92.38	11.43 1.8 3.52	75.92 94.98 87.96	67.96 87.12 78.67	0.95	0.74 0.97 0.84	0.62 0.37 0.45
	GS2397 GS2050 GS2308	42.97 37.99 31.15	0 4.86 4.25	25.72 30.4 36.32	25.69 23.84 23.8	0 1.55 0 1.55 0 0.2 0 0	0 0 1.32	4.79 0.59 1.51 1.43	0.91 0.19 0.27 0.4	1.91 0.77 0.7 1.16	0.29 0.07 0.19 0.14	2.39 1.92 1.7 2.19	2.7 4.71 3.35 3.82	81.04 96.64 92.38 91.32	11.43 1.8 3.52 4.89	75.92 94.98 87.96 86.96	67.96 87.12 78.67 77.23	0.95 0.96 1.00 0.95	0.74 0.97 0.84 0.88	0.62 7 0.37 4 0.45 3 0.54
PN	GS2397 GS2050 GS2308 1003GS14	42.97 37.99 31.15 29.63	0 4.86 4.25 4.41	25.72 30.4 36.32 37.49	25.69 23.84 23.8 25.34	0.2 0 0 0 0 0	0 0 1.32 0.56	4.79 0.59 1.51 1.43 1.11	0.91 0.19 0.27 0.4 0.41	1.91 0.77 0.7 1.16 0.95	0.29 0.07 0.19 0.14 0.11	2.39 1.92 1.7 2.19 2.42	2.7 4.71 3.35 3.82 3.95	81.04 96.64 92.38 91.32 92.44	11.43 1.8 3.52 4.89 3.29	75.92 94.98 87.96 86.96 88.91	67.96 87.12 78.67 77.23 80.57	0.95 0.96 1.00 0.95 0.98	0.74 0.97 0.84 0.88 0.88	4 0.62 7 0.37 4 0.45 8 0.54 8 0.61
PN	GS2397 GS2050 GS2308 1003GS14 GS3086	42.97 37.99 31.15 29.63 27.01	0 4.86 4.25 4.41 9.59	25.72 30.4 36.32 37.49 36.27	25.69 23.84 23.8 25.34 20.22	1.00 1.55 1.55 1.00 1.55 1.00 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00	0 0 1.32 0.56 0	4.79 0.59 1.51 1.43 1.11 3.62	0.91 0.19 0.27 0.4 0.41 0.75	1.91 0.77 0.7 1.16 0.95 1.67	0.29 0.07 0.19 0.14 0.11 0.24	2.39 1.92 1.7 2.19 2.42 2.13	2.7 4.71 3.35 3.82 3.95 2.67	81.04 96.64 92.38 91.32 92.44 83.46	11.43 1.8 3.52 4.89 3.29 8.45	75.92 94.98 87.96 86.96 88.91 78.58	67.96 87.12 78.67 77.23 80.57 73.52	0.95 0.96 1.00 0.95 0.98 1.02	0.74 0.97 0.84 0.88 0.88 0.88	4 0.62 7 0.37 4 0.45 3 0.54 3 0.61 3 0.55
PN PN	GS2397 GS2050 GS2308 1003GS14 GS3086 M002GS1	42.97 37.99 31.15 29.63 27.01 15.68	0 4.86 4.25 4.41 9.59 7.47	25.72 30.4 36.32 37.49 36.27 56.37	25.69 23.84 23.8 25.34 20.22 6.82	1.00 1.55 1.55 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00	0 0 1.32 0.56 0 0	4.79 0.59 1.51 1.43 1.11 3.62 8.43	0.91 0.19 0.27 0.4 0.41 0.75 1.36	1.91 0.77 0.7 1.16 0.95 1.67 2.71	0.29 0.07 0.19 0.14 0.11 0.24 0.46	2.39 1.92 1.7 2.19 2.42 2.13 2.65	2.7 4.71 3.35 3.82 3.95 2.67 2.63	81.04 96.64 92.38 91.32 92.44 83.46 78.82	11.43 1.8 3.52 4.89 3.29 8.45 17.46	75.92 94.98 87.96 86.96 88.91 78.58 81.56	67.96 87.12 78.67 77.23 80.57 73.52 63.06	0.95 0.96 1.00 0.95 0.98 1.02 1.02	0.74 0.97 0.84 0.88 0.88 0.88 0.88 0.88 0.73	4 0.62 7 0.37 4 0.45 3 0.54 3 0.61 3 0.55 3 0.67
PN PN PN PN	GS2397 GS2050 GS2308 1003GS14 GS3086 M002GS1 1003GS29	42.97 37.99 31.15 29.63 27.01 15.68 2.71	0 4.86 4.25 4.41 9.59 7.47 0.35	25.72 30.4 36.32 37.49 36.27 56.37 72.05	25.69 23.84 23.8 25.34 20.22 6.82 17.12	1.00 1.55 1.55 1.0 1.55 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0 0.2 0.63 0.7 3.0	0 0 1.32 0.56 0 0 3.4	4.79 0.59 1.51 1.43 1.11 3.62 8.43 1	0.91 0.19 0.27 0.4 0.41 0.75 1.36 0.73	1.91 0.77 0.7 1.16 0.95 1.67 2.71 2.19	0.29 0.07 0.19 0.14 0.11 0.24 0.46 0.45	2.39 1.92 1.7 2.19 2.42 2.13 2.65 5.77	2.7 4.71 3.35 3.82 3.95 2.67 2.63 4.24	81.04 96.64 92.38 91.32 92.44 83.46 78.82 91.88	11.43 1.8 3.52 4.89 3.29 8.45 17.46 5.11	75.92 94.98 87.96 86.96 88.91 78.58 81.56 90.66	67.96 87.12 78.67 77.23 80.57 73.52 63.06 78.95	0.95 0.96 1.00 0.95 0.98 1.02 1.02	0.72 0.97 0.84 0.88 0.88 0.88 0.88 0.88 0.88 0.88	4 0.62 7 0.37 4 0.45 3 0.54 3 0.61 3 0.55 3 0.67 9 0.57

表 5 晚石炭世侵入岩稀土元素含量及有关参数表

Table 5 REE contents and relevant parameters for the Late Carboniferous intrusive rocks

时		WT 4	岩石名称		P4 II.						元	素含	量()	<10 ⁻⁶)							
代	化专	石口名	12小	1	牛亏	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	
	0	黑云母花岗	闪长斑岩	PM0	03XT22	29.7	55	6.18	20.2	2.96	0.83	2.33	0.37	2.02	0.41	1.09	0.2	1.29	0.2	9.77	
	C ₂ γοπ	黑云母花岗	闪长斑岩	PM	003XT9	21.2	41.6	4.46	15.6	2.7	0.66	2.1	0.38	2.22	0.46	1.3	0.24	1.68	0.28	10.6	
đ	$C_2 \gamma \beta^{zx}$	中细粒黑云母	花岗岩	XT2397		40.1	62.3	9.76	34.3	6.7	0.21	5.57	1.08	6.17	1.21	3.32	0.6	3.73	0.59	34.5	
11/2	C2 10 4	角闪石英	二长岩	XT2050		17.4	36.2	3.51	11.4	1.93	0.46	1.54	0.28	1.64	0.33	0.94	0.16	1.1	0.16	9.04	
呪				X	Г2111	22.2	36	3.85	11.8	1.82	0.53	1.57	0.26	1.38	0.28	0.79	0.14	1.04	0.17	7.26	
11 94	C ₂ γδβ [*]	细粒黑云母花	 b 岗 闪 长 岩	X	XT2308		36.7	4.63	15.2	2.32	0.66	2	0.33	1.86	0.38	1.06	0.2	1.33	0.24	9.72	
灰			PM0	PM003XT14		38.6	5.47	18.5	3.14	0.6	2.45	0.44	2.46	0.51	1.5	0.28	1.86	0.29	10.4		
ш	$C_2 \delta o^x$	细粒石英	闪长岩	X	Г3086	21.4	50.5	5.07	19.4	3.65	1.05	3.03	0.59	3.5	0.72	1.86	0.34	2.15	0.34	17.8	
	C . S	Zerri vleže (* r.1.)	PM002XT1		15.9	36.4	5.07	21.3	4.81	1.26	4.31	0.89	5.51	1.15	3.15	0.56	3.5	0.55	27.7		
	020	311 秋江 [八] 1	PM0	03 XT29	56.4	103	14	52.3	9.62	1.77	7.55	1.38	7.82	1.55	4.17	0.71	4.4	0.66	37.3		
	$C_2 \psi v$	细粒角闪	辉长岩	X	Г3299	18.5	43.8	6.73	29.6	6.55	1.89	5.19	0.96	5.51	1.11	2.77	0.43	2.69	0.39	26.4	
	44 D							1	主要参	≶数											
	件写	ΣREE	ΣCe	:	ΣY	ΣΟ		$\Sigma Ce / \Sigma Y$		δ	Eu		(La/Yb) N		((La/Sm) N		(Gd/Yb) N) N	
P	M003XT2-2	132.55	114.9)	17.68		(6.50		0.93			15.53			5.75		1.53			
F	M003XT9	105.48	86.22	2	19.26		4	4.48		0.82			8.51			4.50		1.06			
	XT2397	210.14	153.4	4	56.77		1	2.70		0.1			7.2	25		3.43		1.26			
2	XT2050	86.09	70.9		15.19		4	4.67		0	.79		10.	67		5.17		1.18			
	XT2111	89.09	76.2		12.89	()		5.91		0	.94		14.	38		7.00)		1.28		
	XT2308	104.63	87.51	1	17.12			5.11		0	.92		14	.2		6.92	2		1.27		
Р	M003XT14	111.6	91.41	1	20.19			4.53		0	.64		9.	1		4.58	8		1.11		
	XT3086	131.4	101.1	1	30.33			3.33		0	.94		6.1	71		3.30	5		1.19		
F	PM002XT1	132.06	84.74	4	47.32			1.79		0.83			3.06			1.90		1.04			
Р	M003XT29	302.63	237.1	1	65.54			3.62		0	.61		8.64			3.36			1.45		
	XT3299	152.52	107.1	1	45.45	8	3	2.36		0.96			4.64			1.62			1.63		

图 4 晚石炭世角闪辉长岩、闪长岩、石英闪长岩、花岗闪长 岩稀土元素分布模式图

Fig. 4 Chondrite-normalized REE distribution patterns for the Late Carboniferous bojite , diorite , quartz diorite and granodiorite

5.3 微量元素

微量元素分析结果、对比值及特征参数见表 6。 与地壳丰度值(黎彤,1976)相比^[6],大离子亲石元 素及活动性元素 K 高于地壳丰度,Ba、Sr、Rb 低于地 壳丰度;放射性生热元素 Th 略高于地壳丰度;非活 动性元素 Nb、P、Zr 低, Hf 与地壳丰度相当, Ta 偏低; 过渡族元素 V、Ti 含量高于地壳丰度, Cr、Co、Ni、Sc 含量低于地壳丰度。

特征参数: Nb* = 0.36 < 1、Zr* = 0.94 < 1、Sr * = 0.76 < 1、P* = 0.56 < 1、Ti* = 0.56 < 1、揭示 Nb、Zr、Sr、P、Ti 亏损; K* = 1.93 > 1,岩石 K 富集。 岩石微量元素蛛网图(图 5)呈现 Rb、Th、Nb、Nd、 Zr、K 等富集, Ba、Sr、P、Ti 等亏损的特征。

图 5 晚石炭世角闪辉长岩、闪长岩、石英闪长岩、花岗闪长 岩微量元素比值蛛网图

Fig. 5 Trace element spidergram for the Late Carboniferous bojite , diorite , quartz diorite and granodiorite

表6 晚石炭世侵入岩微量元素含量及有关参数表

Table 6 Trace element contents and relevant parameters for the Late Carboniferous intrusive rocks

11+1 /12		山ナなわ	144 LT					元	素含量	(×10	⁻⁶)				
17 Eu	115	石口名称	件写	Rb	Sr	Ba	Nb	Ta	Zr	Hf	Th	v	Cr	Co	Ni
	C 6	國二四十出百亿帝共	PM003DG2-2	111	168	855	12.7	1.7	203	5.7	12.1	25.8	1.3	2.7	1.3
	C ₂ γοπ	黑云 可化 凶 内 长 斑 石	PM003DG9	125	138	878	13.7	2.7	195	4.5	11.6	25.3	6.1	3.0	1.1
	$C_2 \gamma \beta^{zx}$	灰白色中细粒黑云母文象 花岗岩	DG2397	218	24.2	307	23.5	1.2	156	4.0	19.8	22.2	1.9	2.3	3.2
	C2 10 4	糜棱岩化角闪石英二长岩	DG2050	98.6	119	851	9.8	1.3	87.2	1.5	11.9	17.0	4.1	2.3	1.3
晚石			DG2111	118	154	895	11.7	2.1	90.5	1.2	12.4	28.9	5.5	2.5	1.3
炭世	$C_2 \gamma \delta \beta^*$	细粒黑云母花岗闪长岩	DG2308	152	159	780	9.9	1.3	141	4.2	13.1	26.0	2.6	4.5	1.3
			PM003DG14	138	112	624	15.9	2.2	189	3.3	13.0	37.6	2.3	3.6	3.0
	C ₂ δ ŏ	细粒石英闪长岩	DG3086	107	197	663	13.2	1.5	260	7.9	10.6	36.6	5.2	5.4	5.6
	C 8	御於何足出	PM002DG1	28.2	132	121	7.8	1.7	235	6.6	4.5	110	75.8	27.1	52.8
	020	细粒内长石	PM003GS29	89.2	299	760	18.8	2.8	324	10.1	12.7	43.4	1.0	5.6	7.5
	$C_2 \psi v$	细粒角闪辉长岩	DG3299	37.0	410	243	10.7	1.2	115	1.5	7.4	176	93.4	27.2	19.7
	大	陆地壳元素丰度 (黎彤, 197	76)	78	480	390	19	1.6	130	1.5	5.8	103	140	25	89
n+ 40		出工材物	+¥ 口.	元素含量(×10 ⁶)							主要	参数			
11 LU	11.5	石石石小	性巧	Sc	K	Ti	Р	K*	Nb*	Sr*	P*	Zr*	Ti*	K/Rb	Rb/Sr
	C 8	黑云母花岗闪长斑岩	PM003DG2-2	2.5	30619	1619	344	3.14	0.20	0.32	0.22	3.55	0.25	275.8	0.66
	C2 γ ο π		PM003DG9	2.9	31200	2878	318	2.81	0.23	0.34	0.26	3.72	0.46	250.2	0.90
	$C_2 \gamma \beta^{zx}$	灰白色中细粒黑云母文象 花岗岩	DG2397	3.3	36013	599	74	3.56	0.30	0.03	0.04	1.79	0.04	165.5	8.99
	C2 1 0 V	糜棱岩化角闪石英二长岩	DG2050	1.7	33357	839	215	5.08	0.16	0.36	0.35	2.37	0.19	338.3	0.83
晚石			DG2111	2.2	33606	839	162	3.50	0.18	0.46	0.28	2.81	0.20	284.1	0.77
炭世	$C_2 \gamma \delta \beta^*$	细粒黑云母花岗闪长岩	DG2308	3.2	32943	1259	154	3.94	0.15	0.43	0.13	3.73	0.24	216.7	0.95
			PM003DG14	3.1	35017	1259	119	3.37	0.23	0.28	0.11	4.11	0.17	254.5	1.23
	C ₂ δo [×]	细粒石英闪长岩	DG3086	3.3	27881	2338	265	3.57	0.24	0.40	0.14	4.26	0.26	260.6	0.54
	C . S	细粒间长出	PM002DG1	15.1	9211	4137	503	1.24	0.34	0.32	0.29	2.61	0.33	326.6	0.21
	020	圳桠内长石	PM003GS29	7.6	23732	2278	503	1.37	0.28	0.27	0.15	2.17	0.10	266.1	0.30
	$C_2 \psi v$	细粒角闪辉长岩	DG3299	10.9	12530	8633	689	1.93	0.36	0.76	0.56	0.94	0.56	338.6	0.09
	大陆	地壳元素丰度(黎形,197	76)	18	17000	6400	1200								

6 讨论

6.1 岩浆结晶的 PT 条件

据 Nathan 等(1978) 提出的阳离子分数温度计 算方法,计算出石英结晶温度为 928℃; 斜长石结晶 温度为 1206℃(表7)。

在 Q-Ab-Or-H2O 系图(图 6) 上,样品点投在 3 ×10⁸Pa 以上压力区域,表明岩浆冷凝矿物共结晶 时的深度大于 10km(1GPa ≈ 33km),其结晶条件代 表岩体侵位时的物理环境,是在较深的岩浆房中结 晶的。

图 6 晚石炭世侵入岩 Q-Ab-Or-H₂O 系图(据 Tuttle 等, 1958)

1. 黑云母花岗闪长斑岩; 2. 角闪石英二长岩; 3. 细粒角闪辉长岩; 4. 中细粒黑云母文象花岗岩; 5. 中粒黑云母二长花岗岩; 6. 细粒黑云 母二长花岗岩; 7. 细粒黑云母花岗闪长岩; 8. 细粒石英闪长岩; 9. 细 粒闪长岩

Fig. 6 Diagram for the Q-Ab-Or-H2O system in the Late Carboniferous intrusive rocks (after Tuttle et al., 1958)

1 = biotite granodioritic porphyry; 2 = amphibole adamellite;
3 = fine-grained bojite; 4 = medium- to fine-grained biotite graphic granite; 5 = medium-grained biotite adamellite; 6 = fine-grained biotite adamellite; 7 = fine-grained biotite granodiorite;
8 = fine-grained quartz diorite; 9 = fine-grained diorite

6.2 岩浆源区特征与岩石成因

阿仁绍布辉长岩的地球化学特点是低 Si 和 Mg、高 Ca 和 Al ,而这种地球化学特点要求岩浆的源 岩应为斜长石橄榄岩和辉石岩。对于前者 ,虽然理 论上斜长石橄榄岩可以部分熔融产生富钙铝的岩 浆(Presnall et al ,2002)^[7] ,但该种橄榄岩只出现在 小于 30km 的深度 ,而在该深度 ,橄榄岩发生部分熔 融的可能性极小。因此 ,阿仁绍布辉长岩的原始岩 浆非常可能来自于辉石岩的部分熔融 ,这也与目前 的实验岩石学资料吻合(Kogiso and Hirschmann, 2001)^[8]。但由此引出的新问题是,该辉石岩是形 成在地幔还是地壳深度上。尽管目前对这两者还 没有很好的判别标志,但我们注意到 TW3299 样品 的铕正异常很弱,而 Ni、Cr、V 含量较高、Rb 的含量 较低,这表明该辉石岩很有可能来自于地幔。而从 阿仁绍布辉长岩的地球化学特点来看,这种辉石岩 的形成很可能与俯冲作用的流体交代有关(周长勇 等 2005)^[9]。推测消减的洋壳板块向本区陆壳之 下俯冲时,由于板块的脱水作用,释放出富 LILE 的 流体和富 LILE 和 LREE 的硅酸盐熔体,形成地幔中 的辉石岩,进而成为本文研究的阿仁绍布辉长岩的 岩浆源区。

6.3 形成的构造环境

在 R1-R2 图解(图7)上投点落于造山旋回趁势 线附近(肖庆辉等 2002)^[10]结合区构造特征分析, 应为造山期的岩石。

在玄武岩 Hf /3-Th-Ta 三角构造判别图解上 (图8) 阿仁绍布辉长岩样品点落在钙碱性玄武岩 (CAB)的范围内 反映阿仁绍布辉长岩体具有大陆 边缘弧玄武岩地球化学特征。

结合内蒙古北部地区地质演化历史,研究区在 晚石炭世属于板内环境,阿仁绍布辉长岩具有大陆 边缘弧的地球化学特征,可能反映在岩浆形成之 前,地幔源区发生了俯冲交代富集作用。

1. 中粒黑云母二长花岗岩; 2. 细粒黑云母二长花岗岩; 3. 细粒黑云母 花岗闪长岩; 4. 细粒石英闪长岩; 5. 细粒闪长岩; 6. 黑云母花岗闪长 斑岩; 7. 角闪石英二长岩; 8. 细粒角闪辉长岩

Fig. 7 R1-R2 diagram for the Late Carboniferous intrusive rocks 1 = medium-grained biotite adamellite; 2 = fine-grained biotite adamellite; 3 = fine-grained biotite granodiorite; 4 = fine-grained quartz diorite; 5 = fine-grained diorite; 6 = biotite granodioritic porphyry; 7 = amphibole adamellite; 8 = fine-grained biotite

时代	代号	岩石名称	样号	石英结晶温度(℃)	斜长石结晶温度(℃)
	0 - 5	图二四步贵间区南央	PM003GS2-2	985.77	1048.55
	C2 γοπ	黑云母化冈内长斑石	PM003GS9	974.56	1073.90
	$C_2 \gamma \beta^{zx}$	中细粒黑云母文象花岗岩	GS2397	1050.31	988.03
晩	C ₂ ηοψ	糜棱岩化角闪石英二长岩	GS2050	1049.97	1018.60
石	C 5.0 X	柳乾丽二四井齿向长舟	GS2308	1010.98	1027.15
炭	C2 70p	细枢黑云母花冈内长右	PM003GS14	992.32	1027.65
世	C ₂ δo ^x	细粒石英闪长岩	GS3086	987.31	1077.18
	C 8	(m 화는 한테 년, 모드	PM002GS1	953.15	1114.83
	020	圳松内长石	PM003GS29	816.51	1066.28
	C2 WV	细粒角闪辉长岩	GS3299	928.01	1205.76

图 8 Hf /3-Th-Ta 构造判别图解(图式据 Wood D A. 1979) WPAB - 板内玄武岩 ,E-MORB - 富集型洋中脊玄武岩 ,N-MORB - 亏 损型洋中脊玄武岩 ,LAT - 岛弧拉斑玄武岩 ,CAB - 钙碱性玄武岩;样 品图列同图 7

Fig. 8 Hf/3-Th-Ta discrimination diagram for tectonic interpretation (after Wood D A , 1979)

WPAB = within-plate basalt; E-MORB = enrichment-type midoceanic ridge basalt; N-MORB = depletion-type mid-oceanic ridge basalt; LAT = island-arc tholeiite; CAB = cala-alkaline basalt. Sample symbols as in Fig. 7

7 结论

(1) 阿仁绍布辉长岩体 SiO₂ 含量(wt%)为
49.62%, Al₂O₃为17.34%, CaO为8.94%, TiO₂为
1.44%, P₂O₅为0.26%; 富集 LILE, 亏损 HFSE。岩体的 Mg[#]值(0.28~0.68,平均为0.52)较高,反映
原始岩浆具幔源原生玄武岩浆特征,在上升过程中
经历的结晶分异程度较低。

(2)阿仁绍布辉长岩 U-Pb 锆石年龄测定结果为 309 ± 2Ma,代表了阿仁绍布辉长岩体的结晶年龄,为晚石炭世。

(3) 计算出石英结晶温度为 928℃ ,斜长石结晶 温度为 1206℃; 岩浆冷凝矿物共结晶时的深度大于 10km 左右 ,其结晶条件代表岩体侵位时的物理环 境 ,是在较深的岩浆房中结晶的。

(4)阿仁绍布辉长岩具有大陆边缘弧的地球化 学特征,可能反映在岩浆形成之前,地幔源区发生 了俯冲交代富集作用。

致谢:本文资料均来自1:5万额仁布格幅 (L49E020015)、乌日尼图幅(L49E020016)、巴彦哈 拉特幅(L49E021015)、达布哈尔幅(L49E021016)、 胡格吉力图生产队幅(L49E022015)区域地质调查 报告,是项目组全体成员集体劳动的成果。样品准 备及分析过程中得到了天津地质矿产研究所同位 素地质实验室的诸多帮助,在此一并表示感谢。

参考文献:

- [1] 邵积东.内蒙古大地构造分区及其特征[J].内蒙古地质, 1998 &7(2):1-23.
- [2] 李惠民 李怀坤 陆松年.用矿脉中热液锆石的 U-Pb 定年确定
 东坪金矿的成矿时代[J].地球学报,1997,18(增刊): 176
 178.
- [3] CHAPPELL B W ,WHITE A J R. Two contrasting granite types[J]. Pacific Geol. ,1974 8: 173 174.
- [4] 洪大卫. 福建沿海晶洞花岗岩带的岩石学和成因演化 [M]. 北京: 科学技术出版社 ,1987.
- [5] LE MAITRE R W et al. A Classification of Igneous Rocks and Glossary of Terms [Z]. Oxford: Blackwell Scientific Publications, 1989. 103.
- [6] 黎彤.化学元素的地球丰度[J].地球化学,1976(1):17-19.
- [7] PRESNALL D C ,GUDFINNSSON G H ,WALTER M J. Generation of midocean ridge basalts at pressure from 1 to 7 Gpa [J]. Geochim. Cosmochim. Acta. 2002 66: 2073 – 2090.
- [8] KOGISO T, HIRSCHMANN M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions [J]. Contrib. Mineral Petrol. 2001 ,142: 347 - 360.

[9] 周长勇,吴福元,葛文春,等. Abdel RAHMAN A A,张吉衡,程 瑞玉.大兴安岭北部塔河堆晶辉长岩体的形成时代地球化学 特征及其成因[J].岩石学报 2005 21(3):763-775. [10] 肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北 京:地质出版社 2002.

Age dating , geochemistry and petrogenesis of the Arenshaobu gabbro masses in the Wurinitu region , northern Inner Mongolia

HE Hong-yun , JU Wen-xin , Baoyinwuliji

(Inner Mongolia Institute of Geological Survey, Hohhot 010020, Inner Mongolia, China)

Abstract: The present paper deals , in detail , with the major element , trace element and rare earth element characteristics of the Arenshaobu gabbro masses in the Wurinitu region , northern Inner Mongolia , with the stress on the petrogenesis , origins of the primitive magmas and their geological implications. The Arenshaobu gabbro masses have SiO₂ contents of 49.62 % , Al₂O₃ contents of 17.34 % , CaO contents of 8.94% , TiO₂ contents of 1.44% , and P₂O₅ contents of 0.26%. The gabbro masses are enriched in LILE , and depleted in HFSE. The higher Mg# values (0.28 - 0.68, with an average of 0.52) suggest the origin of the mantle-derived primitive basaltic magmas with lower degrees of crystallization and differentiation during the ascending processes of the magmas. The zircon U-Pb ages are dated at 309 ± 2 Ma , indicating that the crystallization ages of Arenshaobu gabbro masses may be dated back to the Late Cretaceous. The crystallization temperatures are measured at 928°C for quartz , and 1206°C for plagioclase. The depths for the magmatic colling and mineral cocrystallization are more than 10 km , and the crystallization of the Arenshaobu gabbro masses occurred in the deeper-seated magma chambers. The continental-margin are geochemical signatures of the Arenshaobu gabbro masses have mirrored that the subduction , replacement and enrichment in the mantle source areas might have taken place prior to the formation of the magmas. **Key words**: petrogenesis; zircon U-Pb age dating; gabbro; Arenshaobu; northern Inner Mongolia