首页 | 官方网站   微博 | 高级检索  
     


Biostimulation and Bioaugmentation to Enhance Reductive Dechlorination of TCE in a Long‐Term Flow Through Column Study
Authors:Joan E McLean  Jared Ervin  Jing Zhou  Darwin L Sorensen  R Ryan Dupont
Abstract:Large laboratory columns (15.2 cm diameter, 183 cm long) were fed with groundwater containing trichloroethylene (TCE), were biostimulated and bioaugmented, and were monitored for over 7.5 years. The objective of the study was to observe how the selection of the carbon and energy source, i.e., whey, Newman Zone® standard surfactant emulsified oil and Newman Zone nonionic surfactant emulsified oil, affected the rate and extent of dechlorination. Column effluent was monitored for TCE and its degradation products, redox indicators (nitrate‐N, Fe(II), sulfate), and changes in iron mineralogy. Total bacteria and Dehalococcoides mccartyi strains were quantified using q‐PCR. Complete dechlorination was only observed in the whey treated columns, occurring 1 year after bioaugmentation with addition of a culture known to dechlorinate TCE to ethene, and 3 years later in the non‐bioaugmented column. The addition of the emulsified oils with or without bioaugmentation resulted in dechlorination only through cis‐DCE and vinyl chloride. While Dehalococcoides mccartyi strains are the only known bacteria that can fully dechlorinate TCE, their presence, either natural or augmented, was not the sole determiner of complete dechlorination. The establishment of a supporting microbial community and biogeochemistry that developed with continuous feeding of whey, in addition to the presence of D. mccartyi, were necessary to support complete reductive dechlorination. Results confirm that careful selection of a biostimulant is critical to the success of TCE dechlorination in complex soil environments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号