首页 | 官方网站   微博 | 高级检索  
     


Shake‐table tests of a reinforced concrete frame designed following modern codes: seismic performance and damage evaluation
Authors:Amadeo Benavent‐Climent  David Escolano‐Margarit  Leandro Morillas
Affiliation:1. Department of Structural Mechanics and Industrial Constructions, Polytechnic University of Madrid, Madrid, Spain;2. Department of Mechanics of Structures, University of Granada, Granada, Spain
Abstract:This paper presents shake‐table tests conducted on a two‐fifths‐scale reinforced concrete frame representing a conventional construction design under current building code provisions in the Mediterranean area. The structure was subjected to a sequence of dynamic tests including free vibrations and four seismic simulations in which a historical ground motion record was scaled to levels of increasing intensity until collapse. Each seismic simulation was associated with a different level of seismic hazard, representing very frequent, frequent, rare and very rare earthquakes. The structure remained basically undamaged and within the inter‐story drift limits of the ‘immediate occupancy’ performance level for the very frequent and frequent earthquakes. For the rare earthquake, the specimen sustained significant damage with chord rotations of up to 28% of its ultimate capacity and approached the upper bound limit of inter‐story drift associated with ‘life safety’. The specimen collapsed at the beginning of the ‘very rare’ seismic simulation. Besides summarizing the experimental program, this paper evaluates the damage quantitatively at the global and local levels in terms of chord rotation and other damage indexes, together with the energy dissipation demands for each level of seismic hazard. Further, the ratios of column‐to‐beam moment capacity recommended by Eurocode 8 and ACI‐318 to guarantee the formation of a strong column‐weak beam mechanism are examined. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:moment‐resisting frame  energy dissipation  damage  shake‐table test  column‐to‐beam moment capacity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号