首页 | 官方网站   微博 | 高级检索  
     


A discontinuity in the late Pleistocene alluvial deposits,Hwacheon‐ri,Gyeongju, Korea: Occurrences and paleoenvironmental implication
Authors:Hoil Lee  In Sung Paik  Hyun Joo Kim  Hee‐Cheol Kang  Won Gyeong Seol  Jin‐Young Lee
Affiliation:1. Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea;2. Department of Earth and Environmental Sciences, Pukyong National University, Busan, 48513, Korea
Abstract:A sedimentary discontinuity is present in the late Pleistocene alluvial deposits exposed along the cliff in stream side, Gyeongju, Korea. Sedimentological study, Optically Stimulated Luminescence (OSL) age dating, and X‐ray diffraction (XRD), and X‐ray fluorescence spectrometer (XRF) analyses were conducted in order to interpret the origin of the discontinuity surface. Based on the sedimentological study, these deposits can be divided into three distinct stages, in ascending order: (Stage 1) development of a braided stream flowing from south to north and deposition by debris flows from the mountain aside the stream during and/or after deposition of the braided stream; (Stage 2) deposition by intermittent events during a state of stagnation after the abandonment or migration of the previously existed braided stream; and (Stage 3) deposition of gravels from debris flows from the mountain aside the stream. Hornfelsic gravels are common in Stage 1, whereas andesitic gravels are predominant in Stage 3, suggesting the provenance change from Stage 1 to Stage 3. The discontinuity surface is laterally extensive and marked by a distinct carbonaceous dark grey horizon between Stage 2 and Stage 3. It is characteristic that rootlets mineralized by vivianite are present, and iron‐oxide crusts are cutting across irregularly below the discontinuity surface. It is thus interpreted that the shift of depositional environment from an alluvial plain (Stage 2) (125 ka) to an alluvial fan (Stage 3) (94–55 ka) was an alluvial response to sea level change from the interglacial to the glacial. The development of iron‐oxide crusts and diagenetic vivianite in the discontinuity surface suggests humid condition persisted during the paleoclimatic shift from the last interglacial to the last glacial stages.
Keywords:alluvial deposits  discontinuity  iron‐oxides  late Pleistocene  vivianite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号