首页 | 官方网站   微博 | 高级检索  
     


Soil water content vertical profiles under natural conditions: matching of experiments and simulations by a conceptual model
Authors:R Morbidelli  C Saltalippi  A Flammini  E Rossi  C Corradini
Affiliation:Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
Abstract:The prediction of soil moisture content, θ, as a function of depth, z, and time, t, is of fundamental importance for applications in many hydrological processes. The main objective of this paper is to provide an approach to solve this problem at a local scale in soils with vegetation. The matching of soil moisture vertical profiles observed under natural conditions in grassy plots and their simulations by a conceptual model is presented. Experimental measurements were performed in a plot located in Central Italy, complete with hydrometeorological sensors specifically set up and equipped with a time domain reflectometry system providing the water content, θe(z, t). A conceptual model framework earlier proposed for two‐layered soil vertical profiles was modified and adopted for simulations. The changes concern the incorporation of evapotranspiration, the reduction of the original model for applications also to homogeneous soil vertical profiles, and a correction for the differences existing between assumed and observed initial moisture contents. In the model calibration, it was found that the effects of vegetation could be represented adequately by a fictitious soil vertical profile with a more permeable upper layer of saturated hydraulic conductivity, Ks, independent of time. Then, for the validation events, the model simulations in the stages of both infiltration and redistribution/evapotranspiration reproduced appropriately θe(z, t) with typical values of root mean square error in the range 0.0017–0.0657. Similar results were obtained by applying the modified two‐layered model for simulations of experimental data observed in three other plots located in Northern Italy and Germany. For all four vegetated sites, the two‐layer profile better matched the experimental data than the assumption of a homogeneous profile. Thus, the conceptual approach based on a two‐layered scheme for representing θ(z, t) in soils with vegetation appears to be appropriate for many hydrological applications. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:hydrology  infiltration–  redistribution models  layered soils  field experiments
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号