首页 | 官方网站   微博 | 高级检索  
     


THE MECHANISMS OF ARCUATE STRUCTURES ON THE SOUTH SIDE OF THE ALTYN TAGH FAULT AND THEIR TECTONIC IMPLICATIONS
Authors:LI Bing-shuai  YAN Mao-du  ZHANG Wei-lin  YANG Yong-peng  ZHANG Da-wen  CHEN Yi  GUAN Chong
Abstract:The giant sinistral Altyn Tagh Fault(ATF)is the northern boundary of the Tibetan Plateau. It has been playing important role in adjusting the India-Eurasia collision and the tectonic evolution of the northeastern Tibetan Plateau. Knowledge of the evolution of the ATF can provide comprehensive understanding of the processes and mechanisms of the deformation of the Tibetan Plateau. However, its timing of commencement, amount of displacement and strike-slip rate, as well as the tectonic evolution of the region are still under debate. South of the ATF, there exist a series of oroclinal-like arcuate structures. Knowledge of whether these curved geometries represent original curvatures or the bending of originally straight/aligned geological units has significant tectonic implications for the evolution of the ATF. The Yingxiongling arcuate belt in the western Qaidam Basin and the northern Qaidam marginal thrust belt(NQMTB)north of the Qaidam Basin are the two typical arcuate thrust belts, where the former has a "7-types" structure, and the latter has a reverse "S-type" structure. Successive Cenozoic sediments are well exposed and magnetostratigraphically dated in both belts. Paleomagnetic declination has great advantage to reveal vertical-axis rotations of geological bodies since they become magnetized. Recently conducted paleomagnetic rotation studies in different parts of these two thrust belts revealed detailed Cenozoic rotation patterns and magnitudes of the region. By integrating these paleomagnetic rotation results with regional geometric features and lines of geological evidence, we propose that these two arcuate thrust belts were most likely caused by different rotations in different parts of these curvatures, due to the sinistral strike-slip faulting along the ATF, rather than originally curved ones. The Yingxiongling arcuate belt was shaped by the significant counterclockwise(CCW)rotations of its northwestern half(the Akatengnengshan anticline)near the ATF during~16~11Ma BP, while its southeastern half(the Youshashan anticline)had no significant rotations since at least~20Ma BP. The geometry of the NQMTB was developed firstly by remarkable clockwise rotations of its middle part during~33~14Ma BP, and later possibly CCW rotations of its northwestern part during the Middle to Late Miocene, similar to that of the northwestern part of the Yingxiongling arcuate belt. The characteristics of two-stage strike-slip evolution of the ATF since the Early Oligocene were enriched:1)During the Early Oligocene to mid-Miocene, fast strike-slip faulting along the ATF was proposed to accommodate the eastward extrusion of the northern Tibetan Plateau with its sinistral shear confined to the fault itself. While in the NQMTB and farther east area in the Qilian Shan, its sinistral shear was transferred to the interior of the plateau and was accommodated by deformation of differential crustal shortenings and block rotations in these regions. Thus, the displacement along the ATF west of the NQMTB is larger than that east of the NQMTB. 2)Since the mid-late Miocene, sinistral shear of the ATF was widespread distributed within the northern Tibetan Plateau, instead of concentrated to the fault itself. Its sinistral offsets were partially absorbed by the shortening deformation within the Qaidam Basin and the Qilian Shan, leading the offsets along the ATF decreasing to the east. With the sinistral frictional drag of blocks(the Tarim Basin and the Altyn Tagh Range)on the other side during the second stage evolution of the ATF, a transitional zone south of the ATF was likely developed by remarkable CCW rotations during the Middle to Late Miocene, which is probably confined to east of the Tula syncline. Combining the sinistral offsets along the ATF derived from the paleomagnetic rotations during the Early Oligocene to mid-late Miocene and that by piercing points since the Late Miocene, the post Oligocene strike-slip offsets were constrained as at least~350~430km for the reference in the western Qaidam Basin and~380~460km for the reference in the NQMTB, with an average slip rate of at least~10.6~13.9mm/a. The post Early Oligocene offsets are consistent with the widely accepted offsets of~300~500km obtained by piercing point analyses.
Keywords:Altyn Tagh Fault  arcuate structure  northern Qaidam marginal thrust belt  Yingxiongling  paleomagnetic rotations  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号