首页 | 官方网站   微博 | 高级检索  
     


SLIP OFFSET ALONG STRIKE-SLIP FAULT DETERMINED FROM STREAM TERRACES FORMATION
Authors:XU Bin-bin  ZHANG Dong-li  ZHANG Pei-zhen  ZHENG Wen-jun  BI Hai-yun  TIAN Qing-ying  ZHANG Yi-peng  XIONG Jian-guo  LI Zhi-gang
Affiliation:1. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; 2. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
Abstract:Slip rate is one of the most important parameters in quantitative research of active faults. It is an average rate of fault dislocation during a particular period, which can reflect the strain energy accumulation rate of a fault. Thus it is often directly used in the evaluation of seismic hazard. Tectonic activities significantly influence regional geomorphic characteristics. Therefore, river evolution characteristics can be used to study tectonic activities characteristics, which is a relatively reliable method to determine slip rate of fault. Based on the study of the river geomorphology evolution process model and considering the influence of topographic and geomorphic factors, this paper established the river terrace dislocation model and put forward that the accurate measurement of the displacement caused by the fault should focus on the erosion of the terrace caused by river migration under the influence of topography. Through the analysis of the different cases in detail, it was found that the evolution of rivers is often affected by the topography, and rivers tend to migrate to the lower side of the terrain and erode the terraces on this side. However, terraces on the higher side of the terrain can usually be preserved, and the displacement caused by faulting can be accumulated relatively completely. Though it is reliable to calculate the slip rate of faults through the terrace dislocation on this side, a detailed analysis should be carried out in the field in order to select the appropriate terraces to measure the displacement under the comprehensive effects of topography, landform and other factors, if the terraces on both sides of the river are preserved. In order to obtain the results more objectively, we used Monte Carlo method to estimate the fault displacement and displacement error range. We used the linear equation to fit the position of terrace scarps and faults, and then calculate the terrace displacement. After 100, 000 times of simulation, the fault displacement and its error range could be obtained with 95%confidence interval. We selected the Gaoyan River in the eastern Altyn Tagh Fault as the research object, and used the unmanned air vehicle aerial photography technology to obtain the high-resolution DEM of this area. Based on the terrace evolution model proposed in this paper, we analyzed the terrace evolution with the detailed interpretation of the topography and landform of the DEM, and inferred that the right bank of the river was higher than the left bank, which led to the continuous erosion of the river to the left bank, while the terraces on the right bank were preserved. In addition, four stages of fault displacements and their error ranges were obtained by Monte Carlo method. By integrating the dating results of previous researches in this area, we got the fault slip rate of(1.80±0.51)mm/a. After comparing this result with the slip rates of each section of Altyn Tagh Fault studied by predecessors, it was found that the slip rate obtained in this paper is in line with the variation trend of the slip rate summarized by predecessors, namely, the slip rate gradually decreases from west to east, from 10~12mm/a in the middle section to about 2mm/a at the end.
Keywords:offset stream terraces  strike-slip fault  slip offset  topographic effect  Altyn Tagh Fault  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号