首页 | 官方网站   微博 | 高级检索  
     


DEEP STRUCTURE OF NORTHERN HENAN PROVINCE AND ADJACENT AREAS DERIVED FROM GRAVITY AND SEISMIC SOUNDING DATA IN RELATION TO DISTRIBUTION OF EARTHQUAKES
Authors:JIANG Lei  XU Zhi-ping  FANG Sheng-ming  YANG Li-pu  LI Yi-qing  XU Shun-qiang
Affiliation:Geophysics Exploration Center, China Earthquake Administration, Zhengzhou 450002, China
Abstract:We conduct the wave field separation of the gravity field for northern Henan Province and adjacent areas by the wavelet multi-scale decomposition method, and obtain multi-order gravity wavelet details and regional gravity field information. Then the Parker density surface inversion is used to invert the Moho interface. Based on the analysis of wavelet details in different orders and results of three seismic sounding profiles available in this area, we attempt to reveal the deep crustal structure of the study area. Research results show that the crustal structure is dominated by uneven density distribution accompanied by uplifts and depressions in the region with obvious heterogeneities of the density in horizontal and vertical directions. The gravity field characteristics in the middle-upper crust correspond to the surface topography, the lower crust is dominated by the large-scale high-low gravity anomalies, and several major depression basins show the characteristics of low velocity and low density. At the same time, the depth of the Moho interface changes greatly, which forms the block structure pattern of the regional crustal thickness. Among these features, the area with relatively large variations of the Moho is located in the transition zone of the basin to the Taihang Mountains, or exactly the Moho mutation belt. The Moho interface of the basin area as a whole is dominated by the uplift intertwined with local variations, of which the least and largest depths are 31km and 37km, respectively. Due to the gravity isostasy, the crustal thickness is larger(about 41km)in the northwest of the Taihang Mountains, with less average crustal density. In the study area, earthquakes tend to occur around the transition zone with density changes where the Moho is locally convex. The seismogenic mechanism may be associated with upwelling of upper mantle materials, low-velocity and low-density structures in the middle-lower crust and connection of deep large faults. Moreover, the deep large faults play a controlling role in the distribution of regional earthquakes.
Keywords:Multi-scale wavelet decomposition  Bouguer gravity anomaly  Crust-mantle structure  Northern Henan and adjacent areas  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号