首页 | 官方网站   微博 | 高级检索  
     


D″ anisotropy inverted from shear wave splitting intensity
Authors:Chao Zhang  Zhouchuan Huang
Affiliation:School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Abstract:The D″ layer, located at the bottom of the mantle, is an active thermochemical boundary layer. The upwelling of mantle plumes, as well as possible plate subduction in the D″ layer, could lead to large-scale material transformation and mineral deformation, which could result in significant seismic anisotropy. However, owing to limited observations and immense computational cost, the anisotropic structures and geodynamic mechanisms in the D″ layer remain poorly understood. In this study, we proposed a new inversion method for the seismic anisotropy in the D″ layer quantitatively with shear wave splitting intensities. We first proved the linearity of the splitting intensities under the ray-theory assumption. The synthetic tests showed that, with horizontal axes of symmetry and ray incidences lower than 30º in the D″ layer (typical SKS phase), the anisotropy is well resolved. We applied the method to the measured dataset in Africa and Western Europe, and obtained strong D″ anisotropy in the margins of the large low shear-wave velocity provinces and subducting slabs. The new method makes it possible to obtain D″ anisotropy, which provides essential constraints on the geodynamical processes at the base of the mantle.
Keywords:seismic anisotropy  splitting intensity  D″ layer  plume  slab
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《Earthquake Science》浏览原始摘要信息
点击此处可从《Earthquake Science》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号