田利,高国栋,盖霞.基于新《电力设施抗震设计规范》的地震动随机模型参数研究[J].地震工程学报,2018,40(6):1206-1210. doi:10.3969/j.issn.1000-0844.2018.06.1206

TIAN Li, GAO Guodong, GAI Xia. Parametric Study on the Seismic Random Vibration Model Based on the New "Code for Seismic Design of Electrical Installations" [J]. China Earthquake Engineering Journal, 2018, 40(6): 1206-1210. doi: 10.3969/j.issn. 1000-0844.2018.06.1206

基于新《电力设施抗震设计规范》的地震动 随机模型参数研究

田利¹,高国栋¹,盖 霞²

(1. 山东大学土建与水利学院,山东 济南 250061; 2. 青岛农业大学,山东 青岛 266109)

摘要:根据新《电力设施抗震设计规范》(GB50260-2013)对随机地震动功率谱参数的取值进行分析。介绍新《电力设施抗震设计规范》中设计反应谱,推导设计谱到功率谱的转换过程。选取常用的 Clough-Penzien 修正过滤白噪声模型作为拟合函数,通过功率谱参数拟合,得到不同场地类别、不同抗震设防烈度下的地震动模型参数。该研究成果可为电力工程抗震设计分析提供参考。 关键词:地震动反应谱;地震动随机模型;功率谱参数 中图分类号:P315.9 文献标志码:A 文章编号:1000-0844(2018)06-1206-05 DOI:10.3969/j.issn.1000-0844.2018.06.1206

Parametric Study on the Seismic Random Vibration Model Based on the New "Code for Seismic Design of Electrical Installations"

TIAN Li¹, GAO Guodong¹, GAI Xia²

(1.School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China;
2. Qingdao Agricultural University, Qingdao 266109, Shandong, China)

Abstract: The spectral parameters of a seismic random vibration model have been analyzed based on the Chinese standard code for seismic design of electrical installations (GB50260-2013). In this paper, the design response spectrum in the new code is introduced, and different regulations are made for the seismic effect coefficient curve of different site types. A non-stationary model is established for the process of non-stationary ground motion. The time envelope function is used to consider the non-stationary characteristics of the earthquake, and then the value of the ground motion duration is given. The absolute acceleration under the input of non-stationary vibrations is obtained using the research results of stationary vibrations. The transform process from design spectrum to power spectrum is derived, and the Clough-Penzien model is selected as the fitting function. Using the least square method, the parameters of the power spectrum model corresponding to the design spectrum in the new code are obtained. The fitting power spectrum curve agrees well with the calculated power spectrum curve, indicating that the Clough-Penzien acceler-

收稿日期:2018-08-20

基金项目:国家自然科学基金项目(51578325)

第一作者简介:田 利(1982-),男,博士,教授,主要从事结构抗震研究。E-mail:tianli@sdu.edu.cn。

ation spectrum can correspond well with the calculated power spectrum curve. By fitting the power spectrum parameters, the parameters of ground motion model under different earthquake intensities and site types are obtained. The research results can provide reference for seismic design analysis in power engineering.

Keywords: response spectrum of ground motion; seismic random vibration model; power spectrum parameters

α

0 引言

地震动是指由震源释放出来的地震波引起的地 面运动。这种地面运动可以用地面质点的加速度、 速度或位移的时间函数表示。地震动的显著特点是 其时程函数的不规则性。从70年前起,地震工程界 就已经开始应用随机过程的理论研究地震地面运动 及结构的随机反应分析。目前对于地震动随机模型 的研究取得了很大进展,国内外很多学者根据实际 地震加速度记录给出了各种地面运动加速度的功率 谱密度函数模型。其中最具代表性的是 Kanai-Tajimi 谱^[1],很多学者在此基础上提出了改进的模 型,如 Clough-Penzien^[2]的修正双过滤白噪声模型、 欧进萍等^[3]的过滤白噪声模型、刘章军等^[4]的全非 平稳地震动过程的概率模型。

功率谱参数研究是进行人工地震动模拟以及地 震动分析的基础性工作,众多学者对各类抗震规范 中的功率谱参数进行了研究,如欧进萍等^[3]、张治勇 等^[5]、薛素铎等^[6]及任文杰等^[7]。但基于《电力设施 抗震设计规范》(GB50260-2013)中设计反应谱的功 率谱参数研究几乎没有。对比田利等^[8],本文将对 随机地震动功率谱模型参数的取值依照《电力设施 抗震设计规范》(GB50260-2013)进行修正,推导设 计谱到功率谱的转换过程,选取常用的 Clough-Penzien修正过滤白噪声模型作为拟合函数。通过 功率谱参数拟合,得到不同场地类别、不同抗震设防 烈度下的地震动模型参数,以期为电力工程抗震设 计分析提供参考。

新《电力设施抗震设计规范》中的设计反 应谱介绍

在抗震设计中采用的地震反应谱并非根据已发 生地震地面运动记录计算得到的。因为工程结构抗 震设计需考虑的是将来发生的地震对结构造成的影 响,由于地震的随机性,即使同一地点不同时间发生 的地震绝不会完全相同,因此地震反应谱也将不同。 为了便于工程抗震设计,规定设计反应谱。 2013 版的《电力设施抗震设计规范》中对于地 震影响系数进行了进一步的修正,对于不同场地类 型中地震影响系数曲线做了不同的规定,其中对于 Ⅱ类场地最终曲线如图1所示,公式如式(1)所示。

- 图 1 《电力设施抗震设计规范》(GB50260-2013) 地震影响系数曲线
 - Fig.1 Seismic influence coefficient curve in Code for Seismic Design of Electrical Installations (GB50260-2013)

$$= \begin{cases} \left(0.40 + \frac{\eta_2 - 0.40}{0.1}T\right) \alpha_{\max}, & 0 \leqslant T \leqslant 0.1 \\ \eta_2 \alpha_{\max}, & 0.1 \leqslant T \leqslant T_g \\ \left(T_g\right)^{\gamma} & T_g \leqslant T_g \end{cases}$$

$$\begin{bmatrix} \left(\frac{T_g}{T}\right) & \eta_2 \alpha_{\max}, & T_g \leqslant T \leqslant 5T_g \\ \left[\left[\eta_2 0.2^{\gamma} - \eta_1 (T - 5T_g)\right] \alpha_{\max}, & 5T_g \leqslant T \leqslant 6.0 \end{bmatrix}$$

$$\gamma = 0.9 + \frac{0.05 - \zeta}{0.3 + 6\zeta} \tag{2}$$

$$\eta_1 = 0.02 + \frac{0.05 - \zeta}{4 + 32\zeta} \tag{3}$$

$$\eta_2 = 1 + \frac{0.05 - \zeta}{0.08 + 1.6\zeta} \tag{4}$$

式中: α 为地震影响系数; α_{max} 为地震影响系数最大 值; T_g 为特征周期;T 为结构自振周期; ζ 为结构阻 尼比; γ 为衰减系数; η_1 为下降斜率调整系数,当计 算值小于0时,该值取0; η_2 为阻尼修正系数,该值应 不小于 0.55。 对于其他类场地, 地震影响系数按照下式进行 修正:

$$\alpha_{\rm S} = \eta_3 \alpha \tag{5}$$

0.95

0.90

1.00

式中:α_s为不同类场地的地震影响系数;α为 II 类 场地中计算的系数值;η_s为场地调整系数,应符合 表1的规定。规范中规定水平地震影响系数的最大 值应按照表2取值;水平地震影响系数特征周期按 照表3确定。

表1 场地调整系数

....

1.25

	Table1	Site a	ajustmen	t coeffic	ients	
场地		设	计基本地	震加速度	/ g	
类别	0.05	0.10	0.15	0.20	0.30	≥0.40
Ιo	0.72	0.74	0.75	0.76	0.85	0.90
I_1	0.80	0.82	0.83	0.85	0.95	1.00
П	1.00	1.00	1.00	1.00	1.00	1.00
Ш	1.30	1.25	1.15	1.00	1.00	1.00

表 2 水平地震影响系数最大值

1.10

Table 2 Maximum value of horizontal earthquake

influence coefficient

1.20

抗震设防烈度	6	7	7	8	8	9
设计基本地震加速度/g	0.05	0.10	0.15	0.20	0.30	0.40
地震影响系数最大值	0.125	0.250	0.375	0.500	0.750	1.000

表 3 特征周期值

Table 3Characteristic period

设计地震			场地类别		
分组	Ιo	I_1	П	Ш	IV
第一组	0.20	0.25	0.35	0.45	0.65
第二组	0.25	0.30	0.40	0.55	0.75
第三组	0.30	0.35	0.45	0.65	0.90

2 地震动功率谱的生成

地震动是个典型的随机过程。平稳随机过程的 一个比较方便、简单的描述方式就是功率谱。地震 功率谱是将地震动视为平稳随机过程时在频域的描 述形式,它表征的是地震动的能量在各频段内分布 的相对关系。

反应谱到功率谱的转换是模拟人工地震波的关键问题,非平稳场地上空间变化地震动模拟首先需要研究所得的地面平稳地震动功率谱。根据随机振动理论^[9],在平稳地震动的输入下,单自由度体系的最大绝对加速度反应为:

$$A_{\rm max} = p\sigma_{\rm SA} \tag{6}$$

其中:p 为绝对加速度过程的峰值因子; σ_{sA} 为平稳 输入的功率谱密度函数的标准差。地面非平稳地震 动的过程常用的强度非平稳模型为^[10]:

$$\dot{J}_{g}(t) = \Psi(t) \ddot{X}(t) \tag{7}$$

式中:X(t)代表地面加速度的平稳随机过程; $\Psi(t)$ 为时间包络函数,常采用 Amin 和 Ang^[11]提出的包络函数形式:

$$\Psi(t) = \begin{cases} (t/t_1)^2 \\ 1 \\ e^{-c(t-t_2)} \end{cases}$$
(8)

式中:c为衰减系数; t_1 和 t_2 分别为平稳段的起始、 终止时间。根据文献[6]取各参数值(表 4)。

表 4 时间包络函数的参数值

Table 4 Parameter values of the time envelope function

场地类别	t_1/s	t_2/s	c / s^{-1}
Ι	0.5	5.5	0.45
П	0.8	7.0	0.35
Ш	1.2	9.0	0.25
IV	1.6	12.0	0.15

非平稳过程的功率谱密度函数可以表示为:

$$\mathbf{S}(\boldsymbol{\omega},t) = \boldsymbol{\Psi}^2(t) \mathbf{S}_{s}(\boldsymbol{\omega}) \tag{9}$$

式中: $\Psi(t)$ 为时间包络函数; $S_s(\omega)$ 为平稳功率谱密度函数。

江近仁等^[12]利用一个有限持续时间 t_d等效平 稳的地震动过程来代替常用的非平稳地震动,τ 为 强度超过 50% 峰值的振动时间,按式(10)取值:

$$t_{\rm d} = (\ln 2)/c + t_2 - t_1/\sqrt{2} \tag{10}$$

不同场地条件下地震动的持续时间如表 5 所列。

表 5 地震动持时取值

	Table 5	Ground mo	tion duration	1
场地类别	Ι	П	Ш	IV
持时/s	6.6	9 8.41	10.92	15.49

利用平稳地震动的研究成果,非平稳输入下的 绝对加速度如下式所示:

$$A = p \sqrt{M}\sigma_{\rm SA} \tag{11}$$

式中:
$$p = \sqrt{2\ln(v \cdot t_d)} + \frac{0.5772}{\sqrt{2\ln(v \cdot t_d)}}; v \approx \omega/\pi$$
 为

随机过程的平均穿零率;M 为非平稳输入效应的因 子; σ_{sa} 为平稳反应的标准差。

$$M = \frac{t_2 - 0.3t_1}{t_d} + \frac{1}{2\xi\omega t_d} (e^{-2\xi\omega t_2} - e^{-2\xi\omega t_1}) + \frac{1}{ct_d} [1 - e^{-c(t_d + 0.5t_1 - t_2)}]$$
(12)

 $\sigma_{\rm SA} = \sqrt{\pi \omega G(\omega)/4\xi} \tag{13}$

式中:ξ为阻尼比;ω为圆频率。

整理得到功率谱与加速度反应谱的转换关系如下:

$$G(\boldsymbol{\omega}) = \frac{4\xi}{\pi \boldsymbol{\omega}} \mathbf{A}^2 / \left[M \left(\sqrt{2\ln(\boldsymbol{\upsilon} \cdot \boldsymbol{t}_{\mathrm{d}})} + \frac{0.577\ 2}{\sqrt{2\ln(\boldsymbol{\upsilon} \cdot \boldsymbol{t}_{\mathrm{d}})}} \right)^2 \right]$$
(14)

IV

采用上述方法,将反应谱转变为如图 2 实线所 示的功率谱,用于进一步的分析研究。

3 功率谱的参数拟合

上节中已经对非平稳地震动模拟中常用的强度

非平稳模型[式(7)]进行了说明,模型中利用时间包 络函数考虑了地面运动的非平稳特性。由于新版电 力抗震设计规范中对场地土类别做出了更为详细的 划分,I类场地分为两类情况,因此时间包络函数按照 表 6 进行取值,地震动持时 t_a 的取值如表 7 所列。

表 6 时间包络函数的参数值

Table 6 Para	meter values of	the time envel	lope function
场地类别	t_1/s	t_2/s	c / s^{-1}
Ιo	0.3	6.0	0.50
I $_1$	0.6	6.0	0.45
Ш	0.8	7.0	0.35
Ш	1.2	9.0	0.25
N	1.6	12.0	0.15

表	7 地震	动持时	取值
Table7	Ground	motion	duration
Т	т	п	ш

 场地类别
 I₀
 I₁
 II
 II
 N

 持时/s
 7.174
 7.116
 8.41
 10.92
 15.49

目前已有多种能够代表地面运动的随机模型, 工程界应用较多的是由日本学者 Kanai-Tajimi 提 出的过滤白噪声模型。该模型假设基岩输入为白噪 声过程,将基岩上的覆盖土层视为单自由度线性滤 波器,经过滤后得到地震动的功率谱密度函数表达 式。综合考虑各种模型的特点,最终选定 CloughPenzien 的功率谱模型^[2]作为参数研究对象。

根据文献[8]中求解功率谱参数的迭代方法,采 用最小二乘法求得 2013 版《电力设施抗震设计规范》 反应谱对应的功率谱模型参数(表 8),以II类场地为 例,拟合的地面加速度功率谱密度曲线如图 2 虚线 所示。由图 2 可以看出,拟合功率谱曲线与计算功 率谱曲线吻合较好,说明 Clough-Penzien 修正过滤 白噪声模型能较好地符合计算所得功率谱曲线。

4 结语

本文以《电力设施抗震设计规范》(GB50260-2013)为基础,研究了地震动随机模型参数的取值, 介绍了新《电力设施抗震设计规范》中设计反应谱, 推导了设计谱到功率谱的转换过程;选取常用的 Clough-Penzien 修正过滤白噪声模型作为拟合函 数。基于最小二乘法拟合得到了不同场地类别及抗 震设防烈度下的地震动模型参数。研究结果可为以 地震工程学报 表8 Clough-Penzien 模型参数取值「S₀/(×10⁻⁴ m²・s⁻³)] 2018年

Table 8 Parameter values of the Clough-Penzien model $[S_0/(\times 10^{-4} \text{ m}^2 \cdot \text{s}^{-3})]$

场地		功率谱密度	函数的参数		VI度	₩度	Ⅲ度地震	Ⅲ度	Ⅲ度地震	IX度
类型	ω _g	ξg	$\boldsymbol{\omega}_{f}$	ξ_f	- 地震	地震	(0.15g)	地震	(0.3g)	地震
	39.061	0.606	0.493	0.375	0.563	2.374	5.488	10.019	28.194	56.196
Ιo	31.843	0.666	0.398	0.475	0.766	3.232	7.470	13.637	38.379	76.478
	26.681	0.711	0.338	0.594	0.979	4.131	9.550	17.431	49.056	97.760
	31.755	0.669	0.345	0.569	0.964	4.067	9.380	17.484	49.130	96.788
I $_1$	26.677	0.711	0.334	0.606	1.233	5.178	11.934	22.246	62.522	123.129
	22.825	0.747	0.235	0.867	1.518	6.378	14.704	27.415	77.032	151.759
	22.964	0.746	0.180	1.108	2.301	9.208	20.713	36.823	82.859	147.275
П	20.023	0.774	0.202	1.226	2.747	11.008	24.760	44.018	99.040	176.109
	17.673	0.798	0.212	1.405	3.221	12.944	29.121	51.768	116.468	207.038
	17.721	0.804	0.288	1.457	5.214	19.376	36.898	49.597	111.663	198.393
Ш	14.135	0.848	0.331	1.631	6.910	25.783	49.097	69.995	148.516	263.982
	11.829	0.874	0.262	1.855	8.600	31.933	60.804	81.747	183.93	326.939
	11.729	0.892	0.334	1.869	7.647	28.286	53.478	78.571	159.568	254.641
IV	10.186	0.904	0.228	2.178	9.071	33.521	63.387	93.087	189.083	301.704
	8.406	0.850	0.190	2.349	12.030	44.361	83.808	123.221	250.231	399.212

该模型作为地震地面运动输入的相关研究提供参考,为基于现行电力抗震规范的地震动模拟研究提供依据。

参考文献(References)

- KANAI K.Semi-empirical Formula for the Seismic Characteristic of Ground [J]. Bull Earthquake Res Int, Univ Tokyo, 1957,35:309-325.
- [2] CLOUGH R W, PENZIEN J. Dynamics of Structures [M]. New York: McGraw-Hill Book Co, 1975.
- [3] 欧进萍,牛荻涛.地震地面运动随机过程模型的参数及其结构效应[J].哈尔滨建筑工程学院学报,1990,23(2):24-34.
 OU Jinping, NIU Ditao. Parameters in the Random Process Models of Earthquake Ground Motion and their Effects on the Response of Structures [J]. Journal of Harbin Architectural Civil Engineering Institute,1990,23(2):24-34.
- [4] 刘章军,刘增辉,刘威.全非平稳地震动过程的概率模型及反应 谱拟合[J].振动与冲击,2017,36(2):32-38.
 LIU Zhangjun, LIU Zenghui, LIU Wei. Probability Model of Fully Non-stationary Ground Motion with the Target Response Spectrum Compatible [J]. Journal of Vibration and Shock,2017,36(2):32-38.
- [5] 张治勇,孙柏涛.新抗震规范地震动功率谱模型参数的研究
 [J].世界地震工程,2000,16(3):33-38.
 ZHANG Zhiyong, SUN Botao. Study on the Parameters of Seismic Power Spectrum Model Based on the New Seismic Code[J].World Information on Earthquake Engineering,2000, 16(3):33-38.
- [6] 薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数 研究[J].土木工程学报,2003,36(5):5-10.

XUE Suduo, WANG Xuesheng, CAO Zi. Parameters Study on Seismic Random Model Based on the New Seismic Code[J]. China Civil Engineering Journal, 2003, 36(5):5-10.

- [7] 任文杰,赵利军,穆蒙蒙.现行抗震规范下地震动随机模型参数 研究[J].世界地震工程,2017,33(2):33-38.
 REN Wenjie,ZHAO Lijun,MU Mengmeng.Study on Parameters of Random Earthquake Ground Motion Model Based on Current Seismic Code[J]. World Information on Earthquake Engineering,2017,33(2):33-38.
- [8] 田利,李宏男.基于《电力设施抗震设计规范》的地震动随机模型参数研究[J].防灾减灾工程学报,2010,30(1):17-22. TIAN Li, LI Hongnan. Parameter Study on Seismic Random Model Based on Code for Design of Seismic of Electrical Installations[J]. Journal of Disaster Prevention and Mitigation Engineering,2010,30(1):17-22.
- [9] 李桂青,曹宏,李秋胜,等.结构动力可靠性理论及其应用[M]. 北京:地震出版社,1993.

LI Guiqing, CAO Hong, LI Qiusheng, et al. The Theory and Application for Dynamics Reliability of Structure[M].Beijing: Seismological Press, 1993.

- [10] HOUSNER G W, JENNINGS P C. Generation of Artificial Earthquake[J]. Journal of Engineering Mechanic Division, ASCE, 1964, 90(1): 113-150.
- [11] AMIN M, ANG A H-S. Nonstationary Stochastic Model of Earthquake Motion[J]. Journal of Engineering Mechanic Division, ASCE, 1968, 94(EM2): 559-583.
- [12] 江近仁,洪峰,功率谱与反应谱的转换和人造地震波[J].地震 工程与工程振动,1984,4(3):1-11.
 JIANG Jinren, HONG Feng.Conversion between Power Spectrum and Response Spectrum and Artificial Earthquakes[J].Earthquake Engineering and Engingeering Vibration,1984,4(3):1-11.