首页 | 官方网站   微博 | 高级检索  
     


A parallel computing thin‐sheet inversion algorithm for airborne time‐domain data utilising a variable overburden
Authors:Tue Boesen  Esben Auken  Anders Vest Christiansen  Gianluca Fiandaca  Cyril Schamper
Affiliation:1. Aarhus University, 8000 Aarhus, Denmark;2. Sorbonne Universités, 75005 Paris, France
Abstract:Accurate modelling of the conductivity structure of mineralisations can often be difficult. In order to remedy this, a parametric approach is often used. We have developed a parametric thin‐sheet code, with a variable overburden. The code is capable of performing inversions of time‐domain airborne electromagnetic data, and it has been tested successfully on both synthetic data and field data. The code implements an integral solution containing one or more conductive sheets, buried in a half‐space with a laterally varying conductive overburden. This implementation increases the area of applicability compared to, for example, codes operating in free space, but it comes with a significant increase in computational cost. To minimise the cost, the code is parallelised using OpenMP and heavily optimised, which means that inversions of field data can be performed in hours on multiprocessor desktop computers. The code models the full system transfer function of the electromagnetic system, including variable flight height. The code is demonstrated with a synthetic example imitating a mineralisation buried underneath a conductive meadow. As a field example, the Valen mineral deposit, which is a graphite mineral deposit located in a variable overburden, is successfully inverted. Our results match well with previous models of the deposit; however, our predicted sheet remains inconclusive. These examples collectively demonstrate the effectiveness of our thin‐sheet code.
Keywords:Electromagnetics  Inversion  Modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号