张华,张若玉,何金海,等. 2013. CH₄和 N₂O 的辐射强迫与全球增温潜能 [J]. 大气科学, 37 (3): 745–754, doi:10.3878/j.issn.1006-9895.2012.12013. Zhang Hua, Zhang Ruoyu, He Jinhai, et al. 2013. Radiative forcing and global warming potentials of CH₄ and N₂O [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (3): 745–754.

CH4和N2O的辐射强迫与全球增温潜能

张华1 张若玉^{1,2} 何金海² 吴金秀³

1 中国气象局气候研究开放实验室,国家气候中心,北京 100081
 2 南京信息工程大学大气科学学院,南京 210044
 3 上海市气象信息传媒中心,上海 200030

摘 要 CH₄和 N₂O 作为主要温室气体,自工业革命以来排放量急剧增加,已经被列入《京都议定书》要求控制 它们的排放。本文利用高光谱分辨率的辐射传输模式,计算了 CH₄、N₂O 在晴空大气和有云大气条件下的瞬时辐 射效率和平流层调整的辐射效率,以及它们的全球增温潜能(GWP)和全球温变潜能(GTP),并根据模式结果 拟合了 CH₄和 N₂O 的辐射强迫的简单计算公式。本文的研究表明:CH₄和 N₂O 在有云大气下的平流层调整的辐射 效率分别为 4.142×10⁻⁴ W m⁻² ppb⁻¹和 3.125×10⁻³ W m⁻² ppb⁻¹(1ppb=10⁻⁹),经大气寿命调整后的辐射效率分别为 3.732×10⁻⁴ W m⁻² ppb⁻¹和 2.987×10⁻³ W m⁻² ppb⁻¹ (1ppb=10⁻⁹),经大气寿命调整后的辐射效率分别为 3.732×10⁻⁴ W m⁻² ppb⁻¹和 2.987×10⁻³ W m⁻² ppb⁻¹,与 IPCC (2007)的相应结果高度一致。CH₄和 N₂O 100 年的全 球增温潜能 GWP 分别为 16 和 266; 100 年的脉冲排放的全球温变潜能 GTP^P分别为 0.24 和 233;持续排放的全球温 变潜能 GTP^S分别为 18 和 268。它们在未来全球变暖和气候变化中,影响仅次于 CO₂,仍然起着非常关键的作用。 关键词 CH₄ N₂O 辐射效率 全球增温潜能(GWP) 全球温变潜能(GTP) 文章编号 1006–9895(2013)03–0745–10 中图分类号 P422 文献标识码 A doi:10.3878/j.issn.1006-9895.2012.12013

Radiative Forcing and Global Warming Potentials of CH₄ and N₂O

ZHANG Hua¹, ZHANG Ruoyu^{1, 2}, HE Jinhai², and WU Jinxiu³

1 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081

2 Nanjing University of Information Science and Technology, Nanjing 210044

3 Shanghai Weather Information Media Center, Shanghai 200030

Abstract As the main long-lived greenhouse gases, CH_4 and N_2O are included in the Kyoto Protocol, and countries are required to limit the rapid increase in their emissions since the Industrial Revolution. In this work, a radiative transfer model with a high resolution of 998 bands is used to calculate the instantaneous radiative efficiencies, stratosphericadjusted radiative efficiencies, and lifetime-adjusted radiative efficiencies of CH_4 and N_2O for clear and cloudy skies, as well as their global warming potentials (GWPs) and global temperature potentials (GTPs). Simple fitting formulas for calculating the adjusted radiative forcing due to CH_4 and N_2O are given on the basis of the model results in this work. It is shown that the radiative efficiencies of CH_4 and N_2O for cloudy skies are 4.142×10^{-4} W m⁻² ppb⁻¹ (1ppb=10⁻⁹) and 3.125×10^{-3} W m⁻² ppb⁻¹ after stratospheric adjustment, and 3.732×10^{-4} W m⁻² ppb⁻¹ and 2.987×10^{-3} W m⁻² ppb⁻¹, respectively, after lifetime adjustment, which are highly consistent with those of the IPCC (2007). Moreover, the 100-year GWPs of CH_4 and N_2O are 16 and 266, respectively, and their corresponding 100-year GTPs are 18 and 268 for sustained emissions, and 0.24 and 233 for pulse emissions. These results indicate that CH_4 and N_2O will still play a critical role in

收稿日期 2012-02-06, 2012-10-30 收修定稿

资助项目 国家重点基础研究计划 2010CB955703

作者简介 张华,女,1965年出生,博士,研究员,主要从事大气辐射传输、温室气体辐射强迫与全球增温潜能等方面研究。 E-mail:huazhang@cma.gov.cn

future global warming, second only to CO₂.

Keywords CH₄, N₂O, Greenhouse gases, Radiative efficiency, Global warming potential (GWP), Global temperature potential (GTP)

1 引言

研究表明,自工业革命以来,大气中温室气体 的含量大大增加,对大气组成、辐射强迫和全球气 候变化都具有重要影响,而且对全球气候变暖有主 要贡献。为了减缓全球增暖,必须限制这些温室气 体的排放量。因此,二氧化碳(CO₂)、甲烷(CH₄)、 氧化亚氮(N₂O)和卤化碳等长寿命温室气体,均 被列入《京都议定书》中要求控制它们的排放量。

作为主要的温室气体,CH₄、N₂O 具有大气含 量较高、受人类活动影响大,气体分子辐射吸收能 力较强,大气寿命较长等特性。首先,CO₂、CH₄ 和 N₂O 的大气含量在均匀混合的温室气体中居于 前三位(非均匀混合的水汽和臭氧除外),并且造 成它们浓度增加的主要因素均为人类活动的影响。 大气中 CH₄浓度与人类活动密切相关,60%的排放 来自人类活动,其浓度值在工业化前约 715 ppb

(IPCC, 2007),到 2008 年 CH₄的全球平均体积混 合率已经达到 1797 ppb (1 ppb=10⁻⁹)(WMO, 2009), 近年来仍有明显增加;全球大气中 N₂O 的增加也主 要受到人类活动影响,浓度值已从工业化前约 270 ppb (IPCC, 2007),增加到 2008 年的 321.8 ppb (WMO, 2009)。其次,CH₄和 N₂O 是地球大气的 主要吸收气体,分别在 7.8 μ m 二者有重要的重叠吸 收,因而改变了这些光谱区域大气的吸收性质,对 地气系统向外空的辐射冷却产生很大的影响。再 者,CH₄和 N₂O 都具有较长的大气寿命,即:在自 然过程把排放到大气中的这些温室气体清除之前, 它们将在大气中存留至少十几年甚至上百年,在此 期间,它们累积在大气中,对影响大气辐射平衡和 全球气候产生持续的贡献。

随着全球变暖的加剧,已有愈来愈多的国内外 学者关注 CH₄、N₂O,除了它们的源排放和在大气 中含量的变化,定量评估它们对地球辐射平衡和气 候产生的影响已经成为气候变化研究中的热点。这 是因为,制定具体可行的温室气体减排政策,并为 相关决策提供科学依据,要求定量地评估温室气体 的气候效应,即用一定的标准来衡量不同温室气体

对未来全球气候变暖的相对贡献。目前,对温室气 体的气候效应采用的评估方法,主要包括辐射强 迫、全球增温潜能(GWP)和全球温变潜能(GTP) 等工具。Zhang et al. (2011) 和张华等(2011) 用 高光谱分辨率的辐射传输模式分别研究了《京都议 定书》限制排放的痕量温室气体 HFCs、PFCs 和 SF6 的辐射强迫和全球增温潜能,但是没有研究《京都 议定书》限制排放的 CH4、N2O 等主要温室气体。 Shine et al. (2005)、Fuglestvedt et al. (2003)、石广 玉 (1991, 2007)、Shi (1981)、黄兴友 (2001)等 学者在这方面做了很多工作,但与现在的条件相 比,模式所用谱线资料不够新,辐射模式的精确性 也有待提高。因此,用新的气体吸收资料、更精确 的辐射计算模式和新的评估方法(GTP)来研究 CH₄、N₂O 等《京都议定书》限排气体是十分必要 的。

本文在前人工作的基础上,利用 HITRAN2K 发布的分子吸收资料和高精度的辐射传输模式,首 先计算了 CH₄、N₂O 的瞬时辐射效率和平流层调整 的辐射效率,并考虑了大气寿命对辐射效率的影 响;其次,根据不同浓度下产生的辐射强迫值,拟 合了简单的气体辐射强迫计算公式,以易于评估未 来气体浓度增加对全球变暖的影响;最后,计算了 它们在未来 10~500 年的 GWP 和 GTP,并对两种 不同的排放测量方法进行了比较。

2 资料与模式介绍

2.1 HITRAN 资料

为了准确地研究气体的温室效应,进行精确的 特别是高光谱分辨率的辐射计算,需要输入大气分 子吸收谱线的资料。本文采用的 HITRAN (HIghresolution TRANsmission,高分辨透过率)分子光 谱数据库 (Rothman et al., 2005),是国际科学界公 认且广泛应用于大气辐射传输计算的基础资料,本 文所用版本是 HITRAN2K。HITRAN2K 分子光谱 数据库既收录了 H₂O、CO₂、CH₄、N₂O、O₃等大 气中主要气体的各项谱线参数,也给出了臭氧消耗 物质 CFCs 和 HCFCs,及其代替品 HFCs、PFCs 和 SF₆等诸多化合物的红外吸收截面数据,是本文研 究的基础。Lu et al. (2012)证明了 HITRAN2K 版本的 CH₄和 N₂O 的总线强与目前释放的最新版本 HITRAN08 基本一致,没有太大变化,因此分子光 谱数据的变化不会对本文的计算产生影响。

2.2 辐射传输模式

本文采用的是 Zhang et al. (2003, 2006a, 2006b)研制的长波辐射传输方案。该模式是基于 Zhang et al. (2003)利用 LBLRTM 计算得到的大气 主要温室气体和 CFCs 的吸收系数, 根据 Shi (1981)提出的相关 k-分布吸收系数重排法, Zhang et al. (2003) 提出的气体吸收带重叠优化方法, Zhang et al. (2006a) 提出的 k-分布间隔的选取方 法,以及 Zhang et al. (2006b)的谱带划分方法建 立起来的。Zhang et al. (2006a) 的辐射计算方案 将长波区间分为17、21、27、55、998等不同的谱 带,同时考虑了云的作用。在长波区间云的吸收与 发射算法采用了 Nakajima et al. (2000)的计算方 法。Zhang et al. (2006b) 给出的高精度的 998 带辐 射传输方案则是将光谱区间 10~49000 cm⁻¹ (0.2~ 1000 µm) 划分为 998 个带,长波区间 10~2500 cm⁻¹ (4~1000 µm) 分为 498 个带,每个带的波段 区间均为5 cm⁻¹, k-间隔数量对于每个带都进行了 优化, 2~16 不等, 具体谱带划分、k-间隔数量以 及吸收气体分布见 Zhang et al. (2006b)。张华等 (2011)证明了利用 998 带辐射传输方案计算温室 气体的辐射强迫和全球增温潜能比利用为气候模 式设计的 17 带方案要精确得多, 故本文采用 998 带辐射传输方案进行研究。

该辐射模式中考虑了大气中 15 种温室气体,包括 5 种主要温室气体:H₂O、CO₂、O₃、CH₄和 N₂O,和 CFCs、HFCs、PFCs 等 10 种痕量化合物,并假设这些痕量气体在大气中混合均匀。CH₄主要在第105~124 带、第 239~278 带和第 424~498 带有吸收。可见,高光谱精度的 998 带辐射方案由于谱带划分较细,*k*-间隔数量多,在计算可以更全面地考虑气体的强弱带吸收(Zhang et al., 2011)。

此外,模式将整层大气分为100 层,垂直分辨 率为1km,地面高度设为0km,大气顶取为70km。 对辐射通量和加热率的计算,采用六种模式大气 (Garand, 2001):热带大气(TRO),中纬度夏季 大气(MLS),中纬度冬季大气(MLW),亚极夏季 大气(SAS),亚极冬季大气(SAW)和美国标准 大气(USS)。在此基础上,计算目标气体在六种大 气下的瞬时辐射效率和平流层调整的辐射效率,并 通过对六种模式大气的结果取算术等权平均和其 中3种大气取区域加权平均,可以认为得到全球平 均结果。

3 CH₄、N₂O 的辐射强迫

3.1 定义与计算方案

辐射强迫是目前应用广泛的一种评估温室气 体气候效应相对大小的方法, 定义为某种辐射强迫 因子(如温室气体的浓度)变化时所造成的对流层 顶净辐射通量的变化。IPCC(1996)按照是否允许 平流层温度进行调整,将辐射强迫划分为两种:① 瞬时辐射强迫 (IRF, Instantaneous Radiative Forcing),不考虑平流层温度变化;②调整过的辐 射强迫 (ARF, Adjusted Radiative Forcing), 即, 在保持地表和对流层温度不变的情况下,通过调整 平流层的温度结构,使平流层达到辐射平衡时,对 流层顶的净辐射通量的变化。根据定义,辐射强迫 可以提示气候变化的总趋势,一般而言,正的辐射 强迫将增暖地面和对流层,使全球变暖,引起地表 平均温度升高;负的辐射强迫使地面和对流层变 冷,引起地表平均温度降低。因此,可以通过计算 CH₄和 N₂O 的辐射强迫来估量在它们在大气中的 浓度变化对气候系统产生的影响。

本文采用了 Zhang et al. (2011), 张华等 (2011) 的迭代法来计算平流层调整的辐射强迫, 如图 1 所 示。图中 ε 为收敛值, Δt 为迭代的时间步长, 单位 为 d, 本文取为 1 d。如果满足收敛条件, 即可认 为平流层经过温度调整达到了新的辐射平衡, 此 时所得到的对流层顶净辐射变化即该气体的调 整辐射强迫。如果引起气候系统扰动的气体浓度为 单位浓度, 如 1 ppm 或 1 ppb, 则对应的辐射强 迫称为该气体的辐射效率 (本文中单位统一为 W m⁻² ppb⁻¹)。

云是影响气体辐射强迫的一个重要因子,本文 将云参数输入辐射传输模式来考虑云的影响。根据 国际卫星云气候计划(ISCCP)D2数据计算所得到 的不同云态、云顶压力和光学厚度的15类云的云 量和云水含量等资料参见文献(Zhang et al., 2011, 张华等,2011)。其中低云的高度为1~2km,中云 的高度为4~5km,高云的高度为10~12km。低 云 Cu、Sc、St和中云 Ac、As、Ns等6种云的云粒 子相态有水云和冰云两种,冰云的平均有效半径为

图 1 计算温室气体平流层调整的辐射强迫的迭代方法(引自 Zhang et al., 2011)

Fig. 1 Schematic of iterative method to compute the stratospheric adjusted radiative forcing of GHG (Greenhouse Gas) (from Zhang et al., 2011)

30 μm, 水云为 10 μm。计算时, 地表发射率设为 1.0。

通过在热带、中纬度和亚极三种大气中加入云 参数,可以得到有云大气下的平流层调整的辐射效 率,所采用的计算方法如下:

$$RE = \sum_{i=1}^{15} C_i RE_i + (1 - C) RE_{clear}, \qquad (1)$$

其中, C_i 为每类云的云量, $C=\sum C_i$ 是总云量, RE_{clear} 和 RE_i 分别表示晴空和有云(云类型为 *i*, *i*=1~15) 大气下平流层调整的辐射效率。然后, 通过公式(2) 可计算全球平均的有云大气下平流层调整的辐射 效率(Highwood and Shine, 2000):

$$RE_{mean} = \frac{1}{2} \times RE_{tro} + \left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right) \times RE_{mid} + \left(1 - \frac{\sqrt{3}}{2}\right) \times RE_{sub},$$
(2)

其中, RE_{mean} 是全球平均平流层调整的辐射效率, RE_{tro}、RE_{mid}和 RE_{sub}分别表示热带、中纬度和亚极 大气平流层调整的辐射效率。

3.2 模式检验

为了检验所用模式,本文给出了两种假设情景 下计算的辐射强迫结果,与 Collins et al. (2006)给 出的大气海洋环流模式(AOGCMs)的结果进行了 比较。这两种情景包括:(1)CO₂浓度由 1860 年 287 ppm的基础上加倍至 574 ppm;(2)CO₂浓度加 倍后(574 ppm),水汽含量增加到 1860 年的 1.2 倍。 其中,CO₂浓度增加时,O₂相应减少。这两种情景 下辐射强迫的计算结果包括(1)晴空模式顶部 (TOM)的长波净辐射;(2)晴空 200 hPa 处的长 波净辐射;(3)晴空地表(Surface)长波净辐射。

比较时,选用统一的模式大气——中纬度夏季 大气(MLS),以确保所有的计算都在相同的温度 廓线下进行,模式大气分为 40 层,大气层顶为 80 km,压强为 0.01 hPa,并假设温室气体混合均匀。 在本文的辐射传输模式中,参数设置如下:模式中 层底云浓度为零,气溶胶含量为零。忽略云和气溶 胶的影响以及平流层调整的作用。

表 1 给出了上述两种情景下本文的结果与 Collins et al. (2006)中不同模式的计算结果。本文 计算的 CO₂浓度加倍引起的地表、200 hPa 和模式 顶部的长波辐射强迫分别为 1.7 W m⁻²、5.6 W m⁻² 和 3.03 W m⁻², CO₂浓度加倍后水汽含量增加 20% 引起的长波辐射强迫分别为 11.14 W m⁻²、4.13 W m⁻²和 3.26 W m⁻², 如图 2 中的三角图标所示。由 图 2 可见,本文的结果基本都位于不同大气海洋环 流模式(AOGCMs)的结果和逐线积分模式(LBL) 结果范围之间。对第一种情景,本文结果更接近于 LBL结果;对第二种情景,本文的结果位于不同大 气海洋环流模式(AOGCMs)的范围内,与 LBL 的结果稍有差异,其中,对 CO₂加倍引起的地表长 波辐射强迫,本文结果更接近 LBL 结果。以上比较 说明采用高光谱辐射传输模式进行本文的计算是合 理的。

表 1 不同情景、不同模式下的长波辐射强迫(单位: W m⁻²) Table 1 Comparison among CO₂ longwave radiative forcings under different conditions (unit: W m⁻²)

	,									
模式层	CC	02浓度加值	音	CO ₂ 浓度加倍后,水汽含量增加 20%						
	998 带	AOGCM	s LBL	998 带	AOGCMs	LBL				
TOM	3.03	2.45	2.8	3.26	3.57	3.78				
200 hPa	5.6	5.07	5.48	4.13	4.45	4.57				
Surface	1.7	1.12	1.64	11.14	11.95	11.52				

3.3 加热率与辐射效率

表2列出了CH4和N2O晴空大气下的瞬时辐射 效率和平流层调整的辐射效率,以及有云大气下的 平流层调整的辐射效率。其中,晴空大气下的结果 是六种模式大气的算术平均值,有云大气的结果是 上面三种大气的区域加权平均值。通过对比表2中 晴空大气下瞬时辐射效率和平流层调整后的辐射 效率,可以看到,经过平流层调整,CH4和N2O的 辐射效率分别减少了1.3%和2.3%。平流层温度调 整对辐射强迫的作用是增大或是减小,取决于平流 层温度调整后,温度廓线对对流层顶净辐射通量的 影响(Jain et al., 2000)。如图 3,分别给出在六种 模式大气下,计算的 CH₄和 N₂O 气体浓度变化为 1 ppb 时在长波区间引起的辐射加热率。加热率随不 同模式大气而变化,但是不同模式大气的加热率量 级都比较接近,并且有相似的垂直分布,可以看出, CH₄、N₂O 的加热率在对流层顶以上的平流层都为 负值,在这些大气层上起冷却作用。当平流层经过 调整达到新的平衡后,平流层下部会减少向对流层 的向下辐射通量,引起对流层顶的辐射强迫减少。

表 2 CH_4 和 N_2O 的辐射效率(单位: W m⁻² ppb⁻¹) Table 2 Radiative efficiencies of CH_4 and N_2O (unit: W m⁻² ppb⁻¹)

气体	大气 寿命 /a	晴空	大气	有云		
		瞬时辐 射效率	调整辐 射效率	调整的 辐射效率	大气寿命 调整的辐 射效率	IPCC (2007)
CH_4	12	5.128×10^{-4}	5.062×10^{-4}	4.142×10^{-4}	3.732×10^{-4}	3.7×10^{-4}
N_2O	114	3.874×10^{-3}	3.785×10^{-3}	3.125×10^{-3}	2.987×10^{-3}	3.03×10^{-3}

表 3 中 CH₄和 N₂O 区域平均的有云大气下平流 层 调 整 的 辐 射 效 率 分 别 为 4.142×10^{-4} 和 3.125×10^{-3} W m⁻² ppb⁻¹,分别比晴空下的结果减少 18.2%和 17.4%。这是因为云引起的向上辐射通量的 减少对它们的辐射强迫有较大的影响(Jain et al., 2000)。同时,表 3 还列出了 IPCC(2007)的结果 作为参照。本文 CH₄和 N₂O 在有云大气下的平流层

图 2 (a) CO₂浓度从 287 ppm 增加到 574 ppm 的长波辐射强迫;(b) CO₂浓度加倍后,水汽含量增加 20%的长波辐射强迫。三角图标表示本文计算 结果

Fig. 2 (a) Longwave radiative forcing induced by increased CO₂ concentration from 287 ppm to 574 ppm; (b) longwave radiative forcing induced by moisture content increased by 20% with doubled CO₂ concentration. Triangles indicate the results calculated in this paper. Base map is from Collins et al. (2006)

调整的辐射效率与 IPCC (2007)的结果相比非常一致,差别仅分别为 0.86%和 1.4%。

本文采用 CH₄、N₂O 等温室气体的全球平均 浓度来计算全球平均的辐射强迫(效率),但实际 上,它们的浓度都是随高度有变化的。许多研究表 明,随高度不变的廓线和变化的廓线引起的辐射强 迫存在差别。Sihra et al. (2001) 基于 Jain et al. (2000)的工作提出了一个与大气寿命相关的调整 系数来调整平流层浓度减小对辐射强迫的影响,指 出对大气寿命超过 0.25 年的气体, 该系数为 1- $0.241 \times \tau^{-0.358}$,其中, τ 代表大气寿命,单位为a, 并且指出大气寿命调整后的辐射强迫也会有误差,但 是要比完全不调整好得多(Sihra et al., 2001)。本 文采用该系数计算得出, CH₄和 N₂O 经过大气寿命 调整后的辐射效率分别为 3.732×10⁻⁴ 和 2.987×10⁻³ Wm⁻²ppb⁻¹,比不经过大气寿命调整的辐射效率分 别减少了 9.8%和 4.4%,可见大气寿命越长,调整 前后的差别越小。

3.4 辐射强迫的简单计算公式

温室气体的辐射强迫,可以利用各种辐射传输 模式来计算,包括逐线积分模式、带模式等,也有 各种适用的气候模式。然而应用模式计算辐射强迫 的运算量相对较大,会耗费大量的计算时间。而根 据模式的计算结果可以得出,改变温室气体的浓 度,产生的辐射强迫也相应地发生变化,且两者之 间的对应关系有一定规律。因此,可以将这种对应 关系表示成比较简单的经验公式,以便快速而又精 确合理地计算辐射强迫。

研究表明,可定性地认为:当某种大气温室气体,或由于其吸收带的强度较弱,或由于其在大气中的浓度偏低,或是两者的综合作用,使其在大气中的吸收处于线性吸收区(即吸收率与吸收物质量成正比)时,则其辐射强迫基本上与其浓度变化成线性关系;当吸收处于平方根区(吸收率正比与吸收物质量的平方根)时,则其辐射强迫基本上与其浓度变化成平方根关系;当吸收更强时,其辐射强迫与浓度变化将变成对数关系(石广玉,1991,2007)。

计算 CH₄ 浓度在一定范围内变化造成的平流 层调整的辐射强迫时,必须考虑其与 CO₂、H₂O、 O₃和 N₂O 之间的重叠吸收。根据石广玉等(1991, 2007)、于秀兰等(2001)的研究结果,只需考虑 N₂O 浓度的变化对吸收重叠的影响,其它可以忽略 不计。本文引用了文献(石广玉等,1991,2007; 于秀兰等,2001)中的简化公式形式重新对平流层 调整后的辐射强迫进行了拟合,在计算 CH₄浓度变 化造成的辐射强迫时,只考虑了 N₂O 浓度变化对重 叠效应的影响;同时,利用平方根项和线性项叠加, 可以得到比仅用平方根项更高的拟合精度。经过计 算,得出的简单公式:

$$\begin{aligned} \operatorname{ARF}_{\operatorname{CH}_{4}} &= \alpha(\sqrt{M} - \sqrt{M_{0}}) + \beta(M - M_{0}) + \gamma\sqrt{N}(\sqrt{M} - \sqrt{M_{0}}) + \delta \cdot N(M - M_{0}), \end{aligned}$$

其中, *M*、*N*分别为 CH₄、N₂O 的浓度, CH₄参考 浓度 M_0 =1797 ppb。4 个拟合系数分别为 α =0.03195, β =1.439×10⁻⁴, γ =-1.133×10⁻³, δ =1.221×10⁻⁷。

同理,计算 N₂O 浓度变化造成的辐射强迫时, 只考虑 CH₄ 对吸收重叠的影响,得到公式:

 $\operatorname{ARF}_{N_{2}O} = \alpha(\sqrt{N} - \sqrt{N_{0}}) + \beta(N - N_{0}) +$

 $\gamma \sqrt{M} (\sqrt{N} - \sqrt{N_0}) + \delta \cdot M(N - N_0),$

其中, M、N 意义同上, N_2O 参考浓度 N_0 =321.8 ppb。4 个拟合系数分别为 α =0.08801, β =0.0011, γ = -3.7167×10^{-4} , δ = 2.0116 $\times 10^{-9}$ 。

石广玉等(1991,2007)、于秀兰等(2001) 的研究时间较早,所用的气体谱线和浓度资料都已 陈旧。而本文用于公式拟合的样本数据则是由新的 气体浓度和 998 带高光谱分辨率的辐射传输模式 重新计算出的平流层调整后的辐射强迫 ARF,因此, 本文拟合的公式与石广玉等(1991,2007)、于秀兰 等(2001)的结果相比,不仅目标气体的背景浓度 不同,计算出的气体的辐射强迫数值也更新。

使用拟合公式计算辐射强迫的优点是,当温 室气体的浓度改变时,只需要一次数学公式的计 算,比使用模式计算大大减少了计算量。

4 CH₄ 和 N₂O 的全球增温潜能和全 球温变潜能

本文根据文献(Zhang et al., 2011; 张华等, 2011) 建立的 GWP 和 GTP 模型, 计算了 CH₄ 和 N₂O 未来 20、100 和 500 年的 GWP 和 GTP。

GWP 的定义是瞬时脉冲排放 1 kg 化合物 x,在 一定的时间范围内引起的辐射强迫的积分相对 于脉冲排放等量参考气体(本文采用 CO₂)在同一 时间范围内的辐射强迫的积分。公式如下(IPCC, 2007):

$$GWP_{x} = \int_{0}^{TH} RF_{x}(t)dt = \int_{0}^{TH} a_{x}[x(t)]dt, \qquad (3)$$

$$x(t) = \mathrm{e}^{-t/\tau},\tag{4}$$

$$r(t) = a_0 + \sum_i a_i \exp\left(-\frac{t}{\alpha_i}\right),\tag{5}$$

其中, TH 是时间范围(本文分别取 20、100 和 500

年), t 表示时间, $RF_x 和 RF_r 分别表示化合物 x 和$ $参考气体 CO₂ 的辐射强迫, <math>a_x 和 a_r 分别表示相应$ 的辐射效率, x(t) 和 r(t) 分别表示化合物 x 和参考 $气体 CO₂ 的时间响应函数, 公式(4)中的 <math>\tau$ 表示 大气寿命, 单位为 a, 公式(5)中采用的 CO₂时间 响应函数是 IPCC(2007)给出的最新版本公式, 其中 a_0 、 a_i 和 a_i 均为给定计算参数, 详见 IPCC (2007)。

全球温变潜能(GTP)的定义为:在脉冲排放 1 kg 化合物 x 或者以 1 kg·a⁻¹递增的持续排放化合 物 x,在给定的一段时间 TH 内造成的全球平均地 表温度的变化与参考气体 r(本文采用 CO₂)所造 成的相应变化之比。脉冲排放和持续排放的 GTP 分别表示为 GTP^P 和 GTP^S (Shine et al., 2005),公 式如下:

$$\text{GTP}_{x}^{\text{TH}} = \frac{\Delta T_{x}^{\text{TH}}}{\Delta T_{r}^{\text{TH}}},$$
 (5)

其中, TH 表示时间范围(这里为 20、100 和 500 年); $\Delta T_x 和 \Delta T_r$ 分别表示化合物 x 和 CO₂ 引起的全 球平均地表温度变化,它们可以通过求解全球平均 地表温度变化 ΔT 与辐射强迫 ΔF 之间的公式(Shine et al., 2005)得到,

$$C\frac{\mathrm{d}\Delta T(t)}{\mathrm{d}t} = \Delta F(t) - \frac{\Delta T(t)}{\lambda}, \qquad (7)$$

其中,t表示时间,C是系统的热容量, λ 是气候灵 敏度参数。

脉冲排放和持续排放的绝对全球温变潜能分 别记为 AGTP^P和 AGTP^S,表示在初始时刻排放的 气体在时间 *t* 时刻引起的地表温度的变化,单位为 K kg⁻¹ 和 K (kg a⁻¹)⁻¹。故脉冲排放和持续排放的 GTP 也可以分别表示为(Zhang et al., 2011; 张华 等, 2011)

$$\text{GTP}^{P} = \frac{\text{AGTP}_{X}^{P}}{\text{AGTP}_{C}^{P}},$$
(8)

$$\text{GTP}^{\text{S}} = \frac{\text{AGTP}_{\text{X}}^{\text{S}}}{\text{AGTP}_{\text{C}}^{\text{S}}},$$
(9)

即 GTP 可表示为化合物 x 与参考气体 CO₂ 的绝对 温变潜能之比。计算 GWP 和 GTP 所需要的参数为 气体 x 和 CO₂ 的辐射效率和时间响应函数。这里采 用 Zhang et al. (2012) 计算的有云大气条件下平 流层调整的 CO₂ 辐射效率、以及本文计算的 CH₄ 和 N₂O 的有云大气条件下平流层调整的辐射效率, CH₄、N₂O 和 CO₂ 的时间响应函数取自 IPCC (2007), 气候灵敏度参数、热容量等参数取值与 Shine et al. (2005)相同。表 3 列出了 $CH_4 和 N_2O$ 的 20、100 和 500 年的 GWP,脉冲排放的 GTP^P 和持续排放的 GTP^S ,同时还给出 IPCC (2007)的 GWP 值作为 比较,表 4 则是由大气寿命调整后的辐射效率计算 得出的相应结果。计算时,CO₂ 的大气寿命取 120 年,则经过大气寿命调整的 CO₂ 辐射效率为 1.567×10⁻⁵ W m⁻² ppb⁻¹ (Zhang et al., 2013)。通 过比较表 3 和表 4,可以看出不论 CH_4 或 N_2O ,其 大气寿命调整前后的各项指数变化不大(调整后比 调整前值略有减少或不变)。此后,各项指数均取 大气寿命调整后的值。

由表 3~4 中 GWP 值可以看出,对于脉冲排放 等量的气体, CH₄和 N₂O 对气候变化的贡献是 CO₂ 的几十至上百倍。对 100 年的时间范围,本文计算 的 CH₄和 N₂O 结果分别比 IPCC (2007)的结果小 32%和 11%,用经过大气寿命调整的辐射效率计算 出的结果则分别小 28%和 3%。通过对公式(3)的 分析得出,GWP 计算主要与四个参数直接相关,即 气体的辐射效率和时间响应函数以及参考气体 CO₂ 的辐射效率和时间响应函数,它们共同作用造成 GWP 值的计算差别。经分析可以得出,本文 GWP 的差别主要是由 CH₄、N₂O 辐射效率的不同造成 的,其中本文采用了高精度的辐射传输模式是其中 差别的主要原因。

对比表 3~4 中 GTP^P 值和 GWP 值,除了大气 寿命较长的 N_2O 其 20 年的 GTP^P 值略大于 GWP 值, 其他 GTP^P 值都小于相应的 GWP 值,500 年 GTP^P 值更是远远小于 GWP 值;而且对于大气寿命较小 的 CH₄,两者的差别大于 N_2O_\circ Zhang et al. (2011), 张华等(2011)的研究也表明,大气寿命越小的气体,GTP^P值和GWP值相差越大。这是因为对大气寿命较小的气体,GWP值大大高估了气体脉冲排放对气候变化的影响(Shine et al., 2005)。

GTP^S 考虑的是气体在持续排放情况下对地表 温度的变化产生的相对影响,而在实际中,CH₄和 N₂O 的排放量正是持续增加到大气中的。通过对比 表 3~4 中 GTP^S 值和 GWP 值可以发现,两者的差 别要比同一气体相同时间范围的 GTP^P 值与 GWP 值的差别小,并且随着时间范围的增大,GTP^S 值与 GWP 值差别减小。Zhang et al. (2011)和张华等 (2011)分别对 HFCs、PFCs、SF₆等温室气体的研 究也显示了这一特性,并给出了解释:虽然 GTP^S 和 GWP 的概念相差很大,但在时间跨度较大的情 况下 GTP^S与 GWP 有相似的数学表达式,因而得到 的结果也接近 (Shine et al., 2005)。

本文还计算了 CH₄、N₂O 在未来 500 年内的绝 对全球温变潜能 AGTP^P和 AGTP^S,表示这些气体 脉冲排放或者持续排放在未来 500 年内引起的地表 温度变化,见图 4。由图 4a 可见,N₂O 脉冲排放的 气体引起的地表温度在排放初期迅速增加,并且在 排放后 40 年左右达到一个最大值,然后地表温度 开始缓慢恢复,在未来 400 年后完全得到恢复;CH₄ 则是自开始的几十年内由最大值迅速减小,其后 50 年左右就得到完全恢复。可以发现,地表温度恢复 的快慢与气体的大气寿命长短相关,大气寿命较短 的 CH₄恢复得较快,大气寿命较长的 N₂O 则恢复得 较慢,从量级上看,N₂O 比 CH₄ 对地表温度变化的 影响也要大。图 4b 显示,N₂O 持续排放引起的地 表温度的变化从排放时刻起一直增加,到本文计算

表 3 CH₄和 N₂O 的 20 年、100 年、500 年 GWP、GTP^P、GTP^S和 GWP(IPCC, 2007)

	Table 3 GWP, GTP ⁴ , GTP ⁵ , and GWP (IPCC, 2007) of CH ₄ / N_2O with different TH (20 a, 50 a, and 100 a)												
		GWP			GWP (IPCC, 2007)			GTP ^P			GTP ^S		
气体	大气寿命/a	20年	100年	500年	20年	100年	500年	20年	100年	500年	20年	100年	500年
CH ₄	12	50	17	5.3	72	25	7.6	41	0.26	~ 0	56	19	5.4
N_2O	114	258	266	137	289	298	153	268	233	11	250	269	139

表 4 进行大气寿命调整后, CH₄和 N₂O 的 20 年、100 年、500 年 GWP、GTP^P、GTP^S和 GWP(IPCC, 2007) Table 4 GWP, GTP^P, GTP^S, and GWP (IPCC, 2007) of CH₄ / N₂O with different TH (20 a, 50 a, and 100 a) after the atmospheric lifetime adjustment

	•	0											
		GWP			GWP (IPCC, 2007)			GTP ^P			GTP ^S		
气体	大气寿命/a	20年	100年	500年	20年	100年	500年	20年	100年	500年	20年	100年	500年
CH ₄	12	47	16	5	72	25	7.6	39	0.24	~ 0	53	18	5
N_2O	114	257	266	136	289	298	153	268	233	11	250	269	138

Fig. 4 Surface temperature changes induced by (a) pulse emission and (b) sustained emission of CH₄/N₂O

的节点 500 年达到最大并开始变缓;而 CH₄ 持续排 放在整个计算时间范围内对地表温度变化的影响 都比 N₂O 小得多,其变化缓慢。通过图 4 还可看 出, CH₄和 N₂O 气体持续排放引起的地表温度变化 要比其脉冲排放引起的相应值大两个数量级,对地 表温度变化的影响要大得多。从本文的计算得出:如 果对 N₂O 的排放不加以控制,它会对未来地表温 度变化的产生持续影响并且很难得到恢复,而 CH₄ 对未来气候变化的影响比 N₂O 小得多,且比较容易 得到恢复。

5 结论

本文计算了晴空大气和有云大气下主要温室 气体 CH₄ 和 N₂O 的瞬时辐射效率和平流层调整的 辐射效率,得出:(1)经过平流层温度调整,CH₄ 和 N₂O 的辐射效率均相对减小,这取决于平流层 温度调整后,平流层温度变冷,导致其向对流层辐 射通量减少所致。(2)本文计算的 CH₄ 和 N₂O 经 过大气寿命调整的辐射效率均与 IPCC (2007)的 结果高度一致,差别仅为 0.86%和 1.4%。

以本文计算的 CH₄ 和 N₂O 新的辐射效率为基 础,进一步研究了 CH₄、N₂O 在未来 20、100、500 年时间尺度上的 GWP 和 GTP,并分别计算了 CH₄ 和 N₂O 脉冲排放、持续排放在未来 500 年内引起的 地表温度变化。结果表明:对于脉冲排放等量的气 体,CH₄和 N₂O 的 GWP 值与对应的 GTP^P值相比 显著偏高,说明 GWP 测量方法大大高估了 CH₄和

N₂O对气候变化的影响。

通过本文的计算和比较分析得出,持续排放 CH₄和N₂O引起的地表温度变化要比其脉冲排放引 起的相应值大两个数量级,对未来地表温度变化的 影响要大得多。CH₄对未来地表温度变化的影响比 N₂O小得多,而且比较容易得到恢复。如果对 N₂O 的排放不加以控制,它会对未来地表温度变化的产 生持续的影响并且很难得到恢复。因此控制 N₂O 的 排放迫在眉睫。另外,本文晴空的计算结果是对六 种模式大气算术平均得出的,而有云情况是对三个 纬度带进行面积加权平均得到的,其中造成的不确 定性也许会大于辐射模式计算精度本身造成的不 确定性。

参考文献(References)

- Collins W D, Ramaswamy V, Schwarzkopf M D, et al. 2006. Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) [J]. J. Geophys. Res., 111: D14317, doi:10. 1029/2005JD006713.
- Fuglestvedt J S, Berntsen T K, Godal O, et al. 2003. Metrics of climate change: Assessing radiative forcing and emission indices [J]. Climatic Change, 58: 267–331.
- Garand L, Turner D S, Larocque M, et al. 2001. Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels [J]. J. Geophys. Res., 106 (D20): 24017–24031.
- Highwood E J, Shine K P. 2000. Radiative forcing and global warming potentials of 11 halogenated compounds [J]. J. Quant. Spectrosc. Radiat. Transf., 66: 169–183.

- 黄兴友. 2001. 温室气体全球增温潜能的研究 [D]. 中国科学院大气物 理研究所博士学位论文. 107pp. Huang Xingyou. 2001. Study on global warming potential of greenhouse gas [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 107pp.
- IPCC. 1996. Climate Change 1995: The Science of Climate Change [M] // Houghton J T, Fiho L G M, Callander B A, et al. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, U K and New York: Cambridge University Press.
- IPCC. 2007. Climate Change 2007: The Physical Science Basis [M] // Solomon S, Qin D, Manning M, et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
- Jain A K, Briegleb B P, Minschwaner K, et al. 2000. Radiative forcings and global warming potentials of 39 greenhouse gases [J]. J. Geophys. Res., 105 (D16): 20773–20790.
- Lu P, Zhang H, Jing X W. 2012. The effects of different HITRAN versions on calculated longwave radiation and uncertainty evaluation [J]. Acta Meteorologica Sinica, 26 (3): 389–398 doi:10.1007/s13351-012-0310-1.
- Nakajima T, Tsukamoto M, Tsushima Y, et al. 2000. Modeling of the radiative process in an atmospheric general circulation model [J]. Appl. Opt., 39: 4869–4878.
- Rothman L S, Jacquemart D, Barbe A, et al. 2005. The HITRAN 2004 molecular spectroscopic database [J]. J. Quant. Spectrosc. Radiat. Transf., 96: 139–204.
- Shi G Y. 1981. An accurate calculation and representation of the infrared transmission function of the atmospheric constituents [D]. Ph. D. dissertation, Tohoku University of Japan, 191pp.
- 石广玉. 1991. 大气微量气体的辐射强迫与温室气候效应 [J]. 中国科学 (B 辑), 35 (7): 776–784. Shi Guangyu. 1991. Radiation forcing and greenhouse effect of atmospheric trace gases [J]. Science China Chemical Sciences (in Chinese), 35 (7): 776–784.

石广玉. 2007. 大气辐射学 [M]. 北京: 科学出版社, 402pp. Shi Guangyu.

2007. Atmospheric Radiation (in Chinese) [M]. Beijing: Science Press, 402pp.

- Shine K P, Fulestvedt J S, Hailemariam K, et al. 2005. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases [J]. Climatic Chang, 68 (3): 281–302.
- Sihra K, Hurley M D, Shine K P, et al. 2001. Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons [J]. J. Geophys. Res., 106 (D17): 20493–20505.
- World Meteorological Organization (WMO). 2009. Greenhouse Gas Bulletin: The state of greenhouse gases in the atmosphere using global observations through 2008 [R]. Geneva: World Meteorological Organization.
- 于秀兰,石广玉. 2001. 平流层温度调整后的辐射强迫的简化计算[J]. 高原气象, 20 (3): 271–274. Yu Xiulan, Shi Guangyu. 2001. Simplified calculation of radiative forcing with adjusted stratosphere temperature [J]. Plateau Meteorology (in Chinese), 20 (3): 271–274.
- Zhang H, Nakajima T, Shi G Y, et al. 2003. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations [J]. J. Geophys. Res., 108 (D20): 4641, doi:10.1029/2002JD003358.
- Zhang H, Shi G Y, Nakajima T, et al. 2006a. The effects of the choice of the k-interval number on radiative calculations [J]. J. Quant. Spectrosc. Radiat. Transf., 98 (1): 31–43.
- Zhang H, Suzuki T, Nakajima T, et al. 2006b. Effects of band division on radiative calculations [J]. Opt Eng, 45 (1): 16002–16010.
- Zhang H, Wu J X, Lu P. 2011. A study of the radiative forcing and global warming potentials of hydrofluorocarbons [J]. J. Quant. Spectrosc. Radiat. Transf., 112 (2): 220–229.
- Zhang H, Zhang R Y, Shi G Y. 2013. Radiative forcing due to CO₂ and its effect on global surface temperature change [J]. Advances in Atmospheric Sciences, 30 (4).
- 张华, 吴金秀, 沈钟平. 2011. PFCs 和 SF₆ 的辐射强迫和全球增温潜能 [J]. 中国科学, 41 (2): 215–233. Zhang Hua, Wu Jingxiu, Shen Zhongping. 2011. Radiative forcing and global warming potential of perfluorocarbons and sulfur hexafluoride [J]. Science China Earth Sciences, 54 (5): 764–772, doi:10.1007/s11430-010-415-0.