首页 | 官方网站   微博 | 高级检索  
     

青藏高原那曲地区一次对流云降水的数值模拟
引用本文:侯文轩,华维,郭艺媛,黄天赐,范广洲.青藏高原那曲地区一次对流云降水的数值模拟[J].高原山地气象研究,2020,40(3):18-28.
作者姓名:侯文轩  华维  郭艺媛  黄天赐  范广洲
作者单位:成都信息工程大学 大气科学学院/高原大气与环境四川省重点实验室,成都 610225;成都信息工程大学 大气科学学院/高原大气与环境四川省重点实验室,成都 610225;中国科学院大气物理研究所 竺可桢-南森国际研究中心,北京 100029;南京信息工程大学 气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心,南京 210044;成都信息工程大学 大气科学学院/高原大气与环境四川省重点实验室,成都 610225;南京信息工程大学 气象灾害教育部重点实验室/气象灾害预报预警与评估协同创新中心,南京 210044
基金项目:第二次青藏高原科考项目(2019QZKK010203)四川省杰出青年科技人才项目(2019JDJQ0001)国家重点研发计划项目(2018YFC1505702)国家自然科学基金(41775072)
摘    要:利用NCEP FNL再分析资料为初始场,通过WRF中尺度数值模式(V3.9.1版本)对2015年8月26~27日青藏高原那曲地区一次对流云降水过程进行了模拟,分析了不同积云对流参数化方案和云微物理参数化方案组合对本次降水过程中降水量、环流场、雷达反射率以及云微物理特征模拟效果的影响。结果表明:WRF模式能较好地模拟出本次降水的时空变化特征,但不同参数化方案组合各有优势,总体而言,Grell-Devenyi+SUBYLIN和Grell-Freitas+SUBYLIN组合模拟性能最优。本次对流云降水以冰相过程为主,雪粒子贡献最大,暖云粒子对降水的影响并不明显。从云微物理过程的时间演变可看出,性能最好的SUBYLIN方案能合理模拟降水过程中雪粒子与冰晶粒子间的转换过程,雪粒子可在凝结过程中释放潜热促使对流运动发展,也可通过融化过程促进降水发生,对流层高层冰晶粒子凝华产生的潜热释放亦为深对流的发展创造了有利条件。 

关 键 词:青藏高原  对流云降水  云微物理  数值模拟
收稿时间:2020-08-22

Numerical Simulation of a Convective Cloud Precipitation at Naqu on the Tibetan Plateau
Affiliation:1. School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China;2. Nansen-Zhu Interbarional Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science &Technology, Nanjing 210044, China
Abstract:Based on Weather Research and Forecast system mesoscale model(WRF V3.7.1 version) and the NCEP FNL reanalysis data,a case of convective cloud precipitation at Naqu over the Tibetan Plateau during August 26-27,2015 was simulated with two cumulus parameterization schemes(Grell-Devenyi and Grell-Freitas) and four cloud microphysical parameterization schemes(Lin,Milbrandt,SUBYLIN,and Thompson),and the effects of different parameterization scheme combinations on the precipitation,atmospheric circulation field,radar reflectivity and cloud microphysical process are analyzed and compared. The results showed that WRF model has successfully simulates the spatial-temporal pattern and variation of this precipitation case with the performance varies with different parameterization scheme combinations and the parameterization scheme combinations of Grell-Devenyi + SUBYLIN and Grell-Freitas + SUBYLIN works best in the simulation of this case in general. Meanwhile,the results from simulation also reveal that the ice process dominated by snow particles played a critical role in the development of clouds and precipitation,while the warm cloud particles have small effect on precipitation. Furthermore,it can be seen from the form the temporal variation of cloud microphysical property that the best-performing SUBYLIN scheme can reasonably simulate the conversion process between snow particles and ice crystal particles during precipitation can reasonably reproduce the conversion between snow particles and ice particles during precipitation process and the snow particles can not only release latent to promote the development of convective movement during the condensation process but also promote the precipitation through melting. In addition,the release of latent heat from the condensation of ice particles in the upper troposphere also creates favorable conditions for the development of deep convection. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《高原山地气象研究》浏览原始摘要信息
点击此处可从《高原山地气象研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号