首页 | 官方网站   微博 | 高级检索  
     

全球气候模式对东亚地区地表短波辐射的模拟检验
引用本文:汪方,丁一汇.全球气候模式对东亚地区地表短波辐射的模拟检验[J].应用气象学报,2008,19(6):749-759.
作者姓名:汪方  丁一汇
作者单位:国家气候中心, 北京 100081
基金项目:科技部国际合作项目"区域气候变化的监测、模拟和影响研究"  
摘    要:利用WCRPCMIP3提供的18个全球气候模式输出结果, 检验了其对东亚地区地表短波辐射的模拟能力, 结果表明:多模式集合的多年平均地表短波辐射模拟偏高约8.7 W/m 2, 晴空地表短波辐射模拟偏高约3.4 W/m 2, 地表短波云辐射强迫模拟偏低约5.3 W/m2, 模式间的标准差分别达到9.6, 7.8 W/m2和8 W/ m2; 多模式集合能够很好地模拟出地表短波辐射的纬向平均季节变化的位相特征, 但在量值上还有较大的差距; 模拟偏差分析表明, 多模式集合的区域年平均地表短波辐射、晴空地表短波辐射、地表短波云辐射强迫的均方根偏差分别为34.7, 17.1 W/m 2和29.1 W/ m2, 表明云在地表短波辐射的模拟偏差中起着重要作用; 多模式集合能够很好地模拟出地表入射短波辐射年变化的线性减小趋势, 但模式高估了晴空入射辐射的减小趋势, 而模拟的云辐射强迫变化趋势与ERA 40完全相反。

关 键 词:气候模式    东亚    地表短波辐射
收稿时间:2008-03-26
修稿时间:9/8/2008 12:00:00 AM

Validation of Simulation on Surface Shortwave Radiation over East Asia by Global Climate Models
Wang Fang and Ding Yihui.Validation of Simulation on Surface Shortwave Radiation over East Asia by Global Climate Models[J].Quarterly Journal of Applied Meteorology,2008,19(6):749-759.
Authors:Wang Fang and Ding Yihui
Affiliation:National Climate Center, Beijing 100081
Abstract:Surface shortwave radiation (SSR) plays an important role in surface energy balance.The ability to simulate the disposition and variation of SSR in CGCMs has direct effects on climate projection for the future.Especially the simulation on East Asia monsoon may be affected by the impacts of SSR on surface thermal condition.So it is necessary to validate the ability of CGCMs to simulate SSR in East Asia.By use of 18 CGCMs output provided by WCRPCMIP3 and ERA40 reanalysis data, the ability of GCMs to simulate East Asia SSR is validated through ensemble analysis.The simulation shows remarkable differences among models.The simulated SSR and clear-sky SSR are generally higher than ERA40, while the effect of cloud on SSR (SSCRF) is generally weak.Multi-model ensemble is simulated at about 8.7 W/m2 and 3.4 W/m2 for SSR and clear-sky SSR respectively, and about 5.3 W/m2 lower for SSCRF as compared to ERA40.The standard deviation (STDEV) among different models is 9.6, 7.8 W/m2 and 8 W/m2 for SSR, clear-sky SSR and SSCRF, respectively.The phase characteristics are simulated well for seasonal variation of zonally-averaged SSR, although there is a great gap in magnitude.The simulation is obviously higher in the south of 30°N, especially in summer hemisphere, which is 30—50 W/m2 higher, mainly due to combined effects of low simulation on SSCRF and overestimation of clear-sky SSR both of which have a positive deviation on the SSR simulation. In the north of 30°N, SSR is mainly low by simulation due to the higher simulation of SSCRF.The root mean square deviation (RMSD) in summer is higher than in winter.Multi-model ensemble of RMSD is 34.7, 17.1 W/m2 and 29.1 W/m2 for SSR, clear-sky SSR and SSCRF, respectively, which shows the great effect of cloud on SSR modeling.The STDEV of different model RMSD is 12.5, 11.3 W/m2 and 10.2 W/m2, respectively, showing little difference.The linear decrease in annual downscaling SSR can be simulated rather well by multi-model ensemble. However, for clear-sky downscaling SSR and downscaling SSCRF, the simulation is not good, in other words, the decrease trend of clear-sky downscaling SSR is overestimated by models, while the adverse trend of downscaling SSCRF is given as compared to ERA40.
Keywords:
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号