首页 | 官方网站   微博 | 高级检索  
     

边界层方案对华北低层O3垂直分布模拟的影响
引用本文:徐敬,马志强,赵秀娟,张小玲.边界层方案对华北低层O3垂直分布模拟的影响[J].应用气象学报,2015,26(5):567-577.
作者姓名:徐敬  马志强  赵秀娟  张小玲
作者单位:1.中国气象局北京城市气象研究所, 北京 100089
基金项目:北京市自然科学基金项目(8132025),国家自然科学基金项目(41105092,41305130),城市气象科学研究基金项目(UMRF2013(LH)07), 气象关键技术集成与应用(面上)项目(CMAGJ2014M01),中央级公益性科研院所基本科研业务费专项基金项目(IUMKY201311PP0401)。
摘    要:利用WRF-Chem模式,采用3种边界层参数化方案 (YSU, MYJ和ACM2),针对1个晴空、静稳日 (2013年8月26日20:00—27日20:00(北京时)) 进行模拟,着重分析不同边界层参数化方案对夜间残留层形成及日出前后O3浓度垂直分布形式的模拟效果,并与固城站地面及垂直同步观测资料进行对比。结果表明:3种边界层参数化方案均能够模拟出温度及风速的区域分布形式以及风温垂直结构的变化特征;相比之下,MYJ方案模拟的夜间边界层高度较YSU方案和ACM2方案明显偏高,该对比结果可能是导致近地面污染物浓度模拟差异的重要原因;在夜间稳定层结至日出后稳定状态打破的边界层结构演变过程中,采用YSU方案和ACM2方案模拟的温度和风速垂直扩线形式与观测结果更为接近;同样采用非局地闭合的YSU方案和同时考虑局地和非局地闭合的ACM2方案,对于边界层高度内O3浓度垂直分布形式的模拟效果具有明显优势。

关 键 词:边界层参数化方案    O3    数值模拟
收稿时间:1/9/2015 12:00:00 AM

The Effect of Different Planetary Boundary Layer Schemes on the Simulation of Near Surface O3 Vertical Distribution
Xu Jing,Ma Zhiqiang,Zhao Xiujuan and Zhang Xiaoling.The Effect of Different Planetary Boundary Layer Schemes on the Simulation of Near Surface O3 Vertical Distribution[J].Quarterly Journal of Applied Meteorology,2015,26(5):567-577.
Authors:Xu Jing  Ma Zhiqiang  Zhao Xiujuan and Zhang Xiaoling
Affiliation:1.Institute of Urban Meteorology, CMA, Beijing 1000892.Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, Beijing 100089
Abstract:Located at the base of the troposphere and affected strongly by ground surface, the planetary boundary layer (PBL) is the main passage of air-land interaction and air pollution. The PBL affects the momentum and heat exchange between the ground and atmosphere through the surface force and turbulence transport. The concentration of pollutants on the ground depends on the vertical mixing state of the atmosphere. Thus, the boundary layer parameterization scheme is not only the important part of numerical model for weather forecast, but also the important foundation of air pollution numerical model. A variety of boundary layer parameterization schemes of physical process are developed, which have different effects on the ground meteorological field and pollutant diffusion. To further understand how the boundary layer processes affect the mixing and transport of air pollutants, a sensitivity experiment is designed and the WRF-Chem model with different PBL schemes (MYJ, YSU and ACM2) is utilized to simulate the PBL structures and O3 vertical distributions on a cloudless and steady day (26-27 Aug 2013). Simulations of temperature field and wind speed field using different PBL schemes are compared to observations. The analysis focuses on the difference of simulations of residual layer formation at night and O3 vertical distribution after sunrise using different PBL schemes. Simulations are compared with the radiosonde data of ozone at Gucheng Station. Results show that the regional distribution characteristics and vertical structures of the temperature and wind speed can be well simulated by all these three PBL parameterization schemes, but the simulation of the ground temperature and wind speed are generally on the high side. The nighttime boundary layer height simulated by MYJ scheme is much higher than those simulated by YSU and ACM2 schemes, leading to the difference in near surface pollutants concentration. In the evolution process of the boundary layer structure from stable state in nighttime to slightly disturbance state after sunrise, the vertical temperature and wind structures simulated by YSU and ACM2 schemes are more consistent with observations. Simulations on effects of boundary layer process upon O3 vertical distribution using YSU and ACM2 schemes also have obvious advantages over MYJ scheme. It should be noted that the simulation is only on a clear and steady weather case, and for complex weather conditions, effects of boundary layer schemes need further verification.
Keywords:planetary boundary layer scheme  ozone  numerical simulation
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号