首页 | 官方网站   微博 | 高级检索  
     

北京大兴国际机场相控阵雷达强对流天气监测
引用本文:张曦,黄兴友,刘新安,陆建兵,耿利宁,黄浩,甄广炬.北京大兴国际机场相控阵雷达强对流天气监测[J].应用气象学报,2022,33(2):192-204.
作者姓名:张曦  黄兴友  刘新安  陆建兵  耿利宁  黄浩  甄广炬
作者单位:1.中国民用航空华北地区空中交通管理局,北京 102604
摘    要:北京大兴国际机场相控阵雷达性能先进,可实现对灾害性飞行天气的高效监测。对比该雷达和S波段多普勒天气雷达在2020年6月18日和25日两次强对流过程探测能力表明:2020年6月18日相控阵雷达探测到雷暴清晰的外流边界等弱回波,直到弱回波触发新对流单体并加强后,S波段多普勒天气雷达才探测到该弱回波,时间上比相控阵雷达晚24 min; 2020年6月25日的强对流雹暴过程,相控阵雷达探测的径向速度涡旋结构比S波段雷达清晰,垂直气流悬垂回波及雷暴形态与强雷暴的理论模型更吻合,S波段雷达垂直结构不典型; 相控阵雷达的回波强度空间变化层次丰富,S波段雷达空间分布显得粗糙; 相控阵雷达探测的冰雹三体散射回波及旁瓣回波比S波段雷达显著。因此相控阵雷达具有时间分辨率、空间分辨率、空间覆盖率、弱回波探测能力等方面的优势,更适合监测冰雹、外流边界等中小尺度灾害性飞行天气。

关 键 词:相控阵雷达    强对流天气    监测能力    冰雹    外流边界
收稿时间:2021-10-28

The Hazardous Convective Storm Monitoring of Phased-array Antenna Radar at Daxing International Airport of Beijing
Affiliation:1.North China Regional Air Traffic Management Bureau of CAAC, Beijing 1026042.School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 2100443.Nanjing NRIET Industrial Co., Ltd, Nanjing 211106
Abstract:The C-band phased-array antenna Doppler weather radar (C-PAR) with advanced working parameters can effectively monitor the hazardous aviation weather such as convective storm. To evaluate the performance of C-PAR, observations of two thunderstorm events in June of 2020 by the C-PAR and a S-band Doppler weather radar (CINRAD-SA) owned by Beijing Meteorological Bureau are compared and analyzed. In the morning of 18 June 2020, the weak echo of boundary outflow from thunderstorm is clearly detected by C-PAR, but CINRAD-SA cannot detect the weak echo until a new cell is triggered and enhanced by the boundary outflow, 24 minutes after first detection by C-PAR. A severe hailstorm is observed by C-PAR and CINRAD-SA, and the vortex signature of radial velocity is clearly observed by C-PAR, but not clearly by CINRAD-SA. The storm morphology and suspended echo due to updraft captured by C-PAR is well consistent with the thunderstorm conceptual model, but the storm vertical structure captured by CINRAD-SA is not so typical. The spatial variation of the intensity is very fine and with rich texture on the echo of C-PAR, but it is vague and coarse on that of CINRAD-SA. The three-body scattering spike and side-lobe echo of the hailstorm is easy to be captured by C-PAR, but it is hard to be recognized by CINRAD-SA. At the same time, the phased array radar uses pulse compression technology to obtain better weak echo detection capabilities. The differences of echo distribution and evolution revealed by C-PAR and CINRAD-SA verified that the C-PAR has advantages not only on temporal and spatial resolutions, but also on space coverage and sensitivity to weak echo. For small-scale weather systems like hailstorm, downburst and thunderstorm boundary outflow, the lifespan varies from tens of seconds to minutes, making it difficult to be captured by conventional radar. Therefore, as terminal weather radar, the C-PAR is more suitable to monitor small and medium-scale hazardous aviation weather. The C-PAR can capture the main structure characteristics of precipitation, reveal the initiation and development of a convective storm, and obtain better weak echo detection capabilities. With outstanding advantages, the C-PAR becomes an important and effective detection equipment for terminal aviation weather, which helps to improve aviation flight safety.
Keywords:
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号