首页 | 官方网站   微博 | 高级检索  
     

华北地区一次黄河气旋发生发展时所引起的暴雨诊断分析
引用本文:梁丰,陶诗言,张小玲.华北地区一次黄河气旋发生发展时所引起的暴雨诊断分析[J].应用气象学报,2006,17(3):257-265.
作者姓名:梁丰  陶诗言  张小玲
作者单位:1.中国科学院大气物理研究所, 北京 100029
基金项目:国家高技术研究发展计划(863计划)
摘    要:利用NCEP/NCAR的再分析资料和GMS红外黑体亮度温度 (TBB) 资料等, 对1991年6月9—11日的一次黄河气旋暴雨过程进行了诊断分析。结果表明:黄河气旋的发生发展是大气斜压性强烈发展的结果, 强的高空辐散与正涡度平流共同作用形成了黄河气旋, 对流层低层的暖平流促进了黄河气旋的进一步发展, 并对其移动方向有引导作用; 暴雨出现在黄河气旋的初生、发展阶段, 产生于气旋前部暖区的盾状云系中; 暴雨的水汽有西南和东南两个来源, 其中西南水汽通量大于东南; 暴雨区上空大气具有很强的对流不稳定性, 中尺度对流云团的发生发展, 造成了气旋降水分布的不均匀性和强降水中心; 降水造成的凝结潜热释放对气旋的发展有正反馈作用。

关 键 词:黄河气旋    暴雨    中尺度对流系统
收稿时间:2005-08-02
修稿时间:2006-01-14

Diagnostic Analysis of a Heavy Rain Event in North China Caused by the Development of Yellow River Cyclone
Liang Feng,Tao Shiyan,Zhang Xiaoling.Diagnostic Analysis of a Heavy Rain Event in North China Caused by the Development of Yellow River Cyclone[J].Quarterly Journal of Applied Meteorology,2006,17(3):257-265.
Authors:Liang Feng  Tao Shiyan  Zhang Xiaoling
Affiliation:1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1000292.Beijing Municipal Meteorological Bureau, Beijing 1000893.National Meteorological Center, Beijing 100081
Abstract:Yellow River Cyclone is one of the important weather systems that could produce heavy rain in North China. A heavy rain event occurred from 9 to 11 June 1991 in North China and caused by the development of a Yellow River Cyclone is studied in detail through a combined analysis of NCEP/NCAR reanalysis dataset, the temperature of black body (TBB) data of Geostationary Meteorological Satellite (GMS) and radiosonde data. It is found that the occurrence and development of Yellow River Cyclone are results of intense development of atmospheric baroclinicity not usual in summer season. The joint effects of strong divergence and positive advection of vorticity at high level trigger the Yellow River Cyclone. The warm advection at low-level in the troposphere facilitates the Cyclone's development and leads it to move. The heavy rain region is under the right side of the exit of the high level jet. In the south of the region, from 18:00 (UTC) June 9, low level jet (LLJ) with wind speed greater than 14 m·s-1 occurs at 850 hPa and transports water vapor to it. Heavy rain occurs at early stage of the Yellow River Cyclone and mainly comes from the shield clouds of the warm section of the cyclone. There are two transportation paths of water vapor in this heavy rain event: one is from southwest, the other is from southeast. And the water vapor flux from southwest is larger. The west extension and intensify of the west Pacific subtropical high help the transportation of water vapor to North China along the LLJ. The total precipitable water vapor increases obviously in North China before the occurrence of heavy rain. It is also found that the contours of relative humidity and potential temperature are dense and decrease with height over heavy rain region. The atmosphere is of intensive convective instability. From the cross sections of vorticity and vertical velocity, it is found that an obvious positive vorticity is transferred from high level vortex to the Yellow River Cyclone. Strong convergence of water vapor flux and ascending motion are found in the Cyclone, and the ascending velocity ahead of the Cyclone is larger than the subsidence velocity behind the Cyclone. Therefore, the vertical circulation is asymmetry, which improves the rapid growing of raindrops. As it is found in other studies of Yellow River Cyclone, there are meso-β-scale convective systems developping and moving along the southwest low level jet in this case. These meso-scale convective systems (MCS) in the frontal clouds cause the inhomogeneous of the precipitation and produces intensive precipitation centers. And the release of latent heat caused by precipitation has positive feed back to the development of the Cyclone.
Keywords:Yellow River Cyclone  heavy rain  meso-scale convective system
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号