Journal of Nanjing Institute of Meteorology

非稳定风场作用下太湖梅梁湾流场、散度场的研究

逄勇 濮培民

(中国科学院南京地理与湖泊研究所,南京 210008)

摘 要 利用太湖区域三维大气边界层数值模式和二维水动力学模式,研究了非均 匀、非定常风场作用下的太湖梅梁湾流场和散度场的分布特征,得到了一些有意义的 结论。

关键词 非均匀风场, 散度场特征, 流场特征

分类号 P404

太湖是我国五大淡水湖之一,近年来,由于该地区经济发展迅速,越来越多的污染物被排入湖中,其中污染最为严重的就是梅梁湾。该湾位于太湖最北部,北接无锡市,南北长约14km,东西长约10km,无锡市的风景胜地大多位于该湖湾畔。此外,该湖湾还是无锡市的饮用水源地。80年代后,由于大量污染物的排入,湾顶北部水质日趋恶化,1991年夏季曾发生大量 藻类堵塞自来水厂取水口的恶性事件。为综合治理梅梁湖湾的水环境,弄清湾区湖流场及散度场分布特征是很重要的。散度场分布是影响湾区污染物分布的重要物理场,风场又是湾区流场和散度场的一个主要驱动场,故研究非稳定风场作用下太湖梅梁湾流场和散度场分布特征是 一项很有意义的工作。

1 大气边界层模式及水动力模式控制方程组

1.1 大气边界层三维非定常数值模式控制方程组

采用地形坐标, $z^* = \bar{s} \frac{z - z_c}{s - z_c}$, \bar{s} 为初始模式顶边界高度, z_c 为地形高度。当考虑模式顶边 界高度也随时空变化时, 控制方程组为

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} - w^* \frac{\partial u}{\partial z^*} + f(v - v_g) - \theta \frac{\partial \Pi}{\partial x} + g \frac{z^* - \bar{s}}{\bar{s}} \frac{\partial z_G}{\partial x} - g \frac{z^*}{\bar{s}} \frac{\partial s}{\partial x} + (\frac{\bar{s}}{s - z_G})^2 \frac{\partial}{\partial z^*} (K_z \frac{\partial u}{\partial z^*}) + \frac{\partial}{\partial x} (K_H \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y} (K_H \frac{\partial u}{\partial y})$$

$$\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - w^* \frac{\partial v}{\partial z^*} + f(u_g - u) - \theta \frac{\partial \Pi}{\partial y} + g \frac{z^* - \bar{s}}{\bar{s}} \frac{\partial z_G}{\partial y} - g \frac{z^*}{\bar{s}} \frac{\partial s}{\partial y} + (\frac{\bar{s}}{s - z_G})^2 \frac{\partial}{\partial z^*} (K_z \frac{\partial v}{\partial z^*}) + \frac{\partial}{\partial x} (K_H \frac{\partial v}{\partial x}) + \frac{\partial}{\partial y} (K_H \frac{\partial v}{\partial y})$$
(1)
$$\frac{\partial \theta}{\partial t} = -u \frac{\partial \theta}{\partial x} - v \frac{\partial \theta}{\partial y} - w^* \frac{\partial \theta}{\partial z^*} + (\frac{\bar{s}}{s - z_G})^2 \frac{\partial}{\partial z^*} (K_g \frac{\partial \theta}{\partial z^*}) + \frac{\partial}{\partial x} (K_g \frac{\partial \theta}{\partial z^*}) + \frac{\partial}{\partial x} (K_H \frac{\partial \theta}{\partial x}) + \frac{\partial}{\partial y} (K_H \frac{\partial \theta}{\partial y})$$

收稿日期:1995-04-06;改回日期:1996-01-15

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w^*}{\partial z^*} - \frac{1}{s - z_G} \left(u \frac{\partial z_G}{\partial x} + v \frac{\partial z_G}{\partial y} \right) + \frac{1}{s - z_G} \left(\frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} + v \frac{\partial s}{\partial y} \right) = 0$$

$$\frac{\partial II}{\partial z^*} = -\frac{s - z_G}{\bar{s}} \frac{g}{\theta}$$

$$w^* = \frac{\bar{s}}{s - z_G} w - \frac{z^*}{s - z_G} \left(\frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} + v \frac{\partial s}{\partial y} \right) + \frac{z^* - \bar{s}}{s - z_G} \left(u \frac{\partial z_G}{\partial x} + v \frac{\partial z_G}{\partial y} \right)$$

式中, u,v,w 分别为 x,y,z 方向的风速分量; w^* 为转换坐标下的垂直风速; Π 称为 Exner 函数, $\Pi = c_p (\frac{p}{2})^{R/c_p}$; p_0 是地面气压,取为 1 000 hPa; θ 为位温。

1.2 二维水动力数值模式控制方程组

设流体均匀不可压,将三维流动的水动力学方程组沿水深平均后印得浅水波方程组为

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g \frac{\partial \eta}{\partial x} + fv + F_x + K_h \nabla^2 u$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -g \frac{\partial \eta}{\partial y} - fu + F_y + K_h \nabla^2 v$$

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x} [(\eta + h)u] + \frac{\partial}{\partial y} [(\eta + h)v] = 0$$
(2)

其中,算子 ∇^2 定义为 $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$; 7为垂直方向上湖面相对于平均水面的高度,它反映了 湖水位的变化; h为平均湖深; f为罗斯贝或地转参数; g为重力加速度; F_x、F_y为摩擦力在x、 y方向上的分量。

$$F_{x} = \frac{1}{\rho_{w}(\eta + h)} (\rho_{a}C_{D}^{a}u_{a}\sqrt{u_{a}^{2} + v_{a}^{2}} - \rho_{w}C_{D}^{b}u_{b}\sqrt{u_{b}^{2} + v_{b}^{2}})$$
$$F_{y} = \frac{1}{\rho_{w}(\eta + h)} (\rho_{a}C_{D}^{a}v_{a}\sqrt{u_{a}^{2} + v_{a}^{2}} - \rho_{w}C_{D}^{b}v_{b}\sqrt{u_{b}^{2} + v_{b}^{2}})$$

风应力就是通过 F_x 、 F_y 而起作用; C_b 和 C_b 分别是湖面和湖底的阻尼系数,取 $C_b = 1.3 \times 10^{-3}$ 、 $C_b = 2.5 \times 10^{-3}$; ρ_a 和 ρ_w 分别是空气和水的密度; K_h 是水平方向的涡动粘滞系数,取 $K_h = 5.0\text{m}^2 \cdot \text{s}^{-1}$; u_a 、 v_a 为 x、y 方向的风速; u_b 、 v_b 为 x、y 方向的湖流速度。式(2)具体 求解方法见文献(2)。

2 大气边界层风场模拟结果

计算时,水平网格点为 30×21,格距为 6 km,在垂直方向上,大气分成 15 层,其高度分布 是非均匀的,分别为 0、5、10、100、300、500、700、900、1 200、1 500、2 000、3 000、4 000、5 000、6 000 m,具体求解方法见文献〔3〕。图 1 为 $u_s = 5.0 \text{ m} \cdot \text{s}^{-1} \cdot v_s = 9.0 \text{ m} \cdot \text{s}^{-1}$ 条件(下文称(a) 条件)下的模拟结果。由图 1 可见,开始时,在气压梯度力推动下,风场沿着气压梯度力方向,由 高压区吹向低压区(图 1a),由于大气中风场和气压场的地转关系没有形成,此时,两种场要进 行调整,以达到一种平衡状态。积分 24 h 时,两种场基本趋于平衡(图 1b)。图 2 为 $u_s = -5$. 0 m · s⁻¹ · $v_s = -9.0 \text{ m} \cdot \text{s}^{-1}$ 条件(下文称(b)条件)下模式运行 24 h 后的结果。从图 1、图 2 可见,风进入湖面时,呈现明显的加速过程,加速达 30%,这是由于湖陆粗糙度差异造成的。

3 非稳定风场作用下梅梁湾流场和散度场模拟结果分析

3.1 计算方法

对于五里湖和湖湾连接处,因五里湖面积太小,出入流对梅梁湾湖流特征的影响较弱,这

图 1 ug=5.0 m · s⁻¹、vg=9.0 m · s⁻¹条件下 10 m 处水平风场 a. 积分 2 h; b. 积分 24 h

Fig. 1 10 m horizontal wind with $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}$ and $v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$,

integrated with the 3D boundary-layer model for 2 hr(a) and 24 hr (b)

里简化为陆边界,梅梁湾与太湖连接处为一水边 界。水边界采用嵌套方法,即先计算出太湖流场, 再在水边界处将计算出的太湖流场进行时间和空 间插值后作为计算梅梁湾流场的边界值。计算时, 太湖网格距为2km×2km,时间积分步长为120 s,梅梁湾网格距为 0.5 km×0.5 km,时间积分步 长为 30 s,风场取自大气三维模式的输出结果。

3.2 湖流场模拟结果分析

取气模式从 06 时开始积分后的结果(10 m 风场)作用于湖面。假定初始时刻湖面是静止的, 即 $u = v = 0, \eta = 0$ 。在(a)条件气模式作用下,从 积分2h的湖流模拟结果可看出,此时,太湖水被 大量吹入湾区(图 3a);而在(b)条件气模式作用 下,湾区湖水则大量涌入太湖。积分12h,在(a)条 件气模式作用下,梅梁湾形成了一气旋式湖流场 Fig. 2 10 m horizontal wind with ug=-5.0 m · s⁻¹ (图 3b),而在(b)条件气模式作用下,则有一反气 旋式湖流场形成。积分 24 h,在(a)条件气模式作

 0.739×10^{10}

用下的气旋式环流场消失,形成了一个类似风涌水后梯度流从湾区涌向太湖的流场(图 3c); 在(b)条件气模式作用下的流场结构也发生了较大变化。刘启俊(1993)⁽⁴⁾曾研究了在均匀定常 风作用下梅梁湾湖流场的特征,结果表明,在不同风向作用下,一般积分10h后,在梅梁湾就 会形成一稳定的气旋式或反气旋式湖流场。作者认为,实际情况下,这一稳定的环流场是难以 维持长久的,否则,在存在大量污染排放源的梅梁湾区,这一稳定环流场的存在会使该区富营 养化程度大大高于太湖其他区域,而实际情况并非如此。

图 3 $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}$ 、 $v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$ 条件气模式作用下二维水动力学模式

模拟的太湖梅梁湾湖流场

a. 积分 2 h; b. 积分 12 h; c. 积分 24 h

Fig. 3 Flowfield simulated with the 2D hydrodynamic model for 2 (a),

12 (b) and 24 hr (c) when $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}$ and $v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$

3.3 散度场模拟结果分析

图 4a、b 为(a)条件气模式作用下分别积分 12 h 和 24 h 的太湖梅梁湾湖流散度场分布,由 图可见,辐散、辐合区随时间有明显变化,这是由于作用风场有较大变化所致,同时,二维模式

图 4 二维水动力学模式模拟的太湖梅梁湾散度场

- a. $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}, v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$,积分 12 h;
- b. $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}$, $v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$, 积分 24 h;
- c. $u_g = -5.0 \text{ m} \cdot \text{s}^{-1}$, $v_g = -9.0 \text{ m} \cdot \text{s}^{-1}$ 积分 24 h;

Fig. 4 Divergence field coming from the hydrodynamic model

- a. 12 hr integration for $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}$ and $v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$
- b. 24 hr integration for $u_g = 5.0 \text{ m} \cdot \text{s}^{-1}$ and $v_g = 9.0 \text{ m} \cdot \text{s}^{-1}$

c. 24 hr integration for $u_g = -5.0 \text{ m} \cdot \text{s}^{-1}$ and $v_g = -9.0 \text{ m} \cdot \text{s}^{-1}$

整层积分的特性也使辐散、辐合区产生变化。图 4c 为(b)条件气模式作用下积分 24 h 的散度

场,由图可见,湾顶北部为辐散中心,而在(a)条件气模式作用下,湾顶北部为辐合中心,故地转 风向不同时,湾区辐散辐合的中心位置将不同。另外,分析各种风向作用下的散度场分布可知, 辐散、辐合中心一般都位于湾区靠岸边,故不规则地形是产生湾区辐散、辐合的重要原因。

4 结 论

(1)太湖区域大气边界层风场具有明显的时空变化特征,故在研究湖流场时,风场的时空 变化要加以考虑。

(2)与均匀定常风作用下的湖流场相比,在非均匀非定常风作用下,梅梁湾难以形成稳定 持久的环流场,分析表明,这一结论是较为合理的。

(3)风场、地形因子是影响梅梁湾区辐散辐合场分布的重要因子,故在除藻、藻类富集工程 及相应的管理工作中要充分考虑风场及地形因子的影响。

参考文献

1 汪德灌.计算水利学.南京:河海大学出版社,1989.14~18

2 逢 勇, 濮培民,高 光, 王谦谦.非均匀风场作用下太湖风成流、风涌水的数值模拟及验证.海洋湖沼通报, 1994, (4): 9~15

3 逢 勇,濮培民.太湖区域三维湖陆风场数值模拟.大气科学,1995,19(2);243~251

4 刘启俊·太湖梅梁湾风生湖流数值模拟:[学位论文].南京:中国科学院南京地理与湖泊研究所.1993

STUDY OF FLOW AND DIVERGENCE FIELDS UNDER EFFECT OF UNSTEADY WIND AT MEILIANG LAKE TAIHU

Pang Yong Pu Peimin

(Nanjing Institute of Geography and Limnology, Academia Sinica, Nanjing 210008)

Abstract Research is conducted of the distribution features of flow and divergence fields under the stress of ununiform and unsteady wind at Meiliang on Lake Taihu in terms of a 3D boundary layer model and a 2D hydrodynamic model for the area of the lake, arriving at some meaningful results.

Keywords ununiform wind, flow and divergence fields