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ABSTRACT

Under semi—geostrophic approximation the nonlinear ordinary differential equations are obtained for the motion in
the barotropic and baroclinic zitmospheres with the effects of zonal shear basic flow and topographic forcing included.
Two constraints are acquired of finite—amplitude periodic and solitary waves in the original model with the aid of the
phase—plane geometric qualitative theory of a dynamic system defined by the differential equation. The explicit solution

of the nonlinear waves is found by means of the approximation method and some significant results are achieved.
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I. INTRODUCTION

In recent years much progress has been made in the research of nonlinear waves. The selec-
tion of small parameters is, however, arbitrary and done in a complicated manner when using
the multi—scale perturbation method. To seek for a simpler technique, part of nonlinear proper-
ty is retained in the vorticity equation and then the behavior of nonlinear Rossby waves around
the mechanically—equilibrium point is examined (Liu et al., 1982a; b). Wu (1985) indicated the
application of longwave approximation in the study of Rossby waves. Liu et al. (1987) reported
that the nonlinear ordinary differential equation is changed to the KdV form in terms of a com-
plete nonlinear vorticity equation and the principle of semi—geostrophic approximation, indi-
cating that the Rossby waves under the condition possess all nonlinear characteristics, thus pro-
viding a useful approach to the problem of nonlinear waves.

A qualitative analysis is performed ol nonlinear motion by virtue of the features of phase
space in relation to the nonlinear dynamic system defined by the ordinary differential equation.
The presence of the waves is shown by the existence of a periodic solution of the nonlinear equa-
tion and conditions of the presence of the periodic and solitary forms of the Rossby waves are
obtained by those of the existence of a closed phase orbit over the plane in association with the
dynamic system. Investigated, separately, are the conditions of the presence of periodic and soli-
tary waves, and the nature of the solutions in the barotropic and baroclinic atmospheres with
the effects ol zonal flow and topographic forcing included, leading to some results of signifi-

cance.
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II. DYNAMIC SYSTEM AND MOTION INVARIANTS IN THE BAROTROPIC AND BAROCLINIC ATMOS-
PHERES

1. The Barotropic Model

The shallow—-water, or barotropic, mode) for describing atmospheric motions is in the form
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where /1 and /1, are the height of the free surface and terrain, respectively, with 7, < h.
Set

u=u(y)+u'. v=v. h=h()+1I, (2)
where u(y)= —(g/ f, )oh / ay).

Substituting Eq.(2) into Eq.(1), and then dropping the superscript “prime” and using the
condition of hz< h, we find
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Changing the equation of motion of (3) into a vorticity one, we have
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Under semi~-geostrophic approximation, Eq.(4) and the equation of continuity of (3) can be
rewritten as
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where & (=ov, /ox~— e, / 2y) denotes the geostrophic vorticity,:: =f au /a3y, u, =
(—g/ / Walt / s}) and v,=(g/ f)Noh/ ax). It is noted that u, and v, are used in place of

u and v in (/3—9 u/ay’ )v. ek, /ayhv and (ohp/ ax)u (Liu et al., 1988). Eq.(5) describes
Rossby waves only. Assume it to have the formal solution
u=U), v=W0). gh=a0), (O=kx+1v—rr) (6)
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where @ represents the phase angle., £ and / the wavenumber in the x and y directions,
respectively, and r the circular frequency. By inserting Eq.(6) into Eq.(5) and setting the terrain
slope to be constant and the domain of y variation not to be large so as to have the parameters
vary over a smaller range, as shown in Zhao et al. (1991), we obtain the equation satisfying ® of
the form

(-2EW + (n2,c. + 2, +Clp-C2%
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where C:; = gh, wave velocity C.=r/ k, KZ =k*+/" and C , =g/ fo )k, /ay)
— g/ f,k)oh , / ax). The primed quantity denotes the differentiation with respect to the phase
angle.

Eq.(7) represents the second—order nonlinear ordinary differential equation describing
nonlinear barotropic Rossby waves under the effects of zonal basic flow and terrain. For
u+ C, =0 no effects of the factors are available, in which case Eq.(7) is rewritten as
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which is easy to transform into a KdV equation with the related solutions of cnoidal and soli-
tary waves. Studies of the nature of KdV wave solutions are numerous and can be found else-
where. This article has focus on the case of u + C, #0.

2

For f — 9—’; # 0, Eq.(7) reads
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Eq.(9) can be changed 1o the form
d ,Q =sgn(e)(Q +%#). an
dt pe 01

where 0 =(®+ A4+ B)/{A4+2B), «a=(A+B)B, b=A4 +2B.
Eq.(11) is equivalent to the following differential dynamic system
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Evidently, Eq.(12) is the equation of Hamilton type such that the dynamic system relative to the
original equation is conservative with no attractors of any type available except the likelihood of
unchanged flow pattern, i.e., the motion invariant. Then we have
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so that H, being independent of 1, denotes a motion invariant. Then we find
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where V(Q) is equivalent to potential energy and H, is specified by the initial disturbance.
Thus, the problem at issue is reduced to that of the effect upon H, associated with initial dis-
turbance of the unit mass in the potential field defined by ¥(Q).
Now we come to investigate the case of § — o u/ 9_v2 = (), wherein Eq.(7) is rewritten as
2
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Eq.(16) is equivalent to the following differential dynamic system
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in which H=pP° /2 - sgnle NQ — In|Q + 1]). Similarly, we have the motion invariant in the
form
0’ _P (e
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94 ACTA METEOROLOGICA SINICA Vol. 7

2. The Baroclinic Model

Under semi—geostrophic approximation the equations governing the motion in the
baroclinic atmosphere take the form
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in which the meanings of these symbols are the same as in Liu et al. (1987). Assume the solution
of traveling waves to be in the form
iu = U0, v=V()
w=W{0), ¢=a0)
Substitution of (21) into (20) with Bk / r(K, +n) in lieu of ®" as shown in Liu et al. (1987)

with 6= kx + Iy + nz — rt. @21

yields the equation satisfying @ in the form
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Integration done of Eq.(22) with respect to # with the integration constant of zero gives
rb"—s [(=s®) ZS(D) —d*(1—s®)+d' 1 -so+a" 1] =0, (23)

wheres=(1/ NY'B/C (K> +n’), b=—B/C K., d = /K,) and n, = f,(n/N).
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WithQ =1—5s® and ©=1b| "0, Eq.(23) is changed to
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which is equivalent to the following differential dynamic system
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where H= P /2+sgn®[Q’ /6 —d 0> /2—d'Q +d'(Q +d)n|Q + d* |1. Similarly, we
have the motion invariant in the form
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Up to this point we have obtained the dynamic systems in relation to the barotropic and
baroclinic models together with the motion invariants.
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III. ANALYSIS OF CHARACTERISTICS OF THE MOTION ON THE PHASE PLANE ASSOCIATED WITH
THE DYNAMIC SYSTEM

The characteristics of the motion over the phase plane in relation to the dynamic system are
studied in terms of the motion invariants. This proves to be a useful approach. Obviously, the
closed (homoclinic) trajectory on the plane corresponds to the solution of finite—amplitude pe-
riodic (solitary) waves. In the barotropic model, for ¢5=0 two equilibrium points A, ((A+B8) /
(A4+2B), 0} and A, (B/ (A+2B). 0) exist on the (Q, P)—defined phase plane (Fig. 1) and only
one point (0, 0) for ¢=0 (Fig. 2). And in the baroclinic model two points A, (a,. 0) and A (ay,

0) are seen (Fig. 3), where a; and «, are two single real roots (with o, > — d’ >a ) of the

transcendental equation

%—d2Q+d41n'Q+d2|=0. 27)

From the pattern of the phase trajectory (PT) we have the following.

Fig. 1. Potential function V(@) and phase trajectory for e==0 in the barotropic model with (a) sgn(e) =1 and « > 0. (b)

sgn(e)=1and u<0;{(c) sgn{e)=~1 and a> 0 and (d) sgnle) = -1 and a< 0.
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Fig.2. AsinFig. | butfore=0with (a) sgnle,)=1,and Fig. 3. Asin Fig. | cxcept for the baroclinic model with

(b) sgne,)=—1 only. (a) sgn{h)= 1 and (b} sgn(h) = -1 only.
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(1) With sgn(e)=1 and a> 0 (Fig. la) and with the initial disturbance H, satisfying

1 A a 1+A4/b 1 A a
Hi< H,< H, where H, —5(1 —E)—b—:(l —2ln——2—) and H, —5(1 +g)_b_2(l
1—A4/b . . .
—2lnT ), the PT is a closed curve around the center 4, or a homoclinic trajectory

through the saddle point 4,. And for H,> H, the PT is unclosed.

(2) With sgn(e)=1 and a< 0 (Fig. 1b) no closed trajectories are existent, meaning neither
finite—amplitude periodic (FAP) nor solitary waves, for any initial disturbance H,,.

(3) With sgn(e)=—1 and > 0 (Fig. 1c) the PT is a closed curve around the center 4, ora
homoclinic trajectory through the saddle point 4, when -H,< H,<—H, is satisfied, and the PT
is unclosed, suggesting that neither FAP nor solitary waves are available, for H,>—H,.

(4) With sgn(e)=—1 and a< 0 (Fig. 1d), for any H, the PT’ s are two families of closed
curves about A, and 4,, separately, corresponding to the solution of FAP waves but no solu-
tion of solitary waves is found.

(5) With sgn(e,)=1 (Fig. 2a) no closed trajectory exists, indicating no solution of either
FAP or solitary waves, for any H,.

(6) With sgn(e;)=—1 (Fig. 2b) and for H;>>0, the PT is a closed curve about the center
which is related to the solution of FAP waves but no solitary waves are available, and for
Hy<0 the PT is unclosed with neither of the types existent.

(7) With sgn(b)=1 (Fig. 3a) and for a? /3<H,< ai / 3 the PT is a closed curve around

A, or a homoclinic trajectory through A, and for H > a; /'3 the PT is unclosed so that no so-

lution of bounded steady waves is existent.
(8) With sgn(b)=~1 (Fig. 3b) the PT is a closed curve surrounding 4, or a homoclinic tra-

jectory through A4, for — az /3 <H < — ai / 3, and the PT is unclosed so that no solution of

bounded steady waves is existent for H > — a': /3.

IV. CONDITIONS OF THE EXISTENCE OF SOLUTIONS OF NONLINEAR WAVES

The westerly basic flow u> 0 is considered in the barotropic model. From Section I1I we
can have the conditions of the presence of the following nonlinear waves and their types.

»
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For the initial phase disturbance | <H < H, there is the solution of FAP or solitary
waves (for Hy= H,). and if H,> H, or

IS C NC +C)C —w
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is satisfied, then no solution of nonlinear Rossby waves is available for any H,,.
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(2) For (/3——9—1;)/(174- C,) >0, if Eq.(28) holds, then, for —H, <H < —H , we find

ay
the solution of FAP or solitary waves (with Hy=-H)). And for Hy> -H, no solution of
nonlinear Rossby waves is existent, If Eq.(29) holds, then the solution of FAP waves is available

but no solution of the other type is existent for any H,,.

2u

(3) If — = =0, then
ay
E(C +C NC ~w)=<0, (30)
which has the solution of FAP waves but none of the other types when A, >>0. If H;<0 or
¢c +one, —w>o 31

is satisfied, then, for any H, there is no solution of nonlinear Rossby waves.

From the foregoing discussion we see that in the original model there exist two basic con-
straints, i.e., initial phase disturbance (H,) and phase velocity (C,), for the solutions of FAP and
solitary waves, The effects of basic flow, its shear and terrain on the constraints are displayed in
determining the possible domain of evaluating H, and C,. Therefore, the flow, shear and terrain
have some influence upon wave behavior. To stress the topographic effect on the waves the zon-
al flow and pB effects are neglected, ie., f— olu/ ay2 =0. For H,> 0, only when
C/C +C,)<0 is the solution of topographic FAP waves available. As such, for C,>0 (C,<0)
we have —~C, < C, <0(0< C, < C,). It is seen that in the former case the west (east)—facing slope
favoring the trailing (leading) waves, the orographic waves generated over the southern slope
propagate westward, and in the latter, western (eastern) slope promoting leading (irailing)
waves, the orographic waves produced on the north—facing slope move eastward. As a rule,
Rossby waves march towards the east if westerly flow is taken into account, the northern
(southern) slope causing the speeding up (slowing down) of the propagation (a result in agree-
ment with the observational fact) so that the E-W directed terrain favors the formation of a
transversal trough or a shear line. On the other hand, the western (eastern) slope quickens lead-
ing (trailing) waves and slows down trailing (leading) ones so that N—S oriented terrain pro-
motes the shortening (elongating) of the leading (trailing) waves. Now we consider the effect of
the factor £ The N-S directed terrain makes it possible for the leading wave pattern to change
to a closed circulation of low pressure, which seems to serve as an interpretation of the vortex
forming on the east side of the Qinghai—Xizang Plateau, as is given by a quasi—geostrophic
model (Lu, 1986). 1n addition, from (30) of the present work one can see that the result achieved
is true only in the inertially stable domain (Ea >0) and for (Ea < 0) it is somewhat different. For

C,>0{C,<0) we have C, >0 (C,<0) or C,<—C, (C,>—C,). Therefore, the trailing (leading)
waves on the west (east)—facing slope can travel either westward or eastward along the southern
slope, and so can the leading (trailing) waves on the western (eastern) slope along the north~fac-
ing slope. In a word, the terrain has effect on the waves in a more complicated fashion with ba-
sic flow and shear considered than without. It is seen from the conditions of nonlinear waves
that effects of zonal-shear (low and terrain determine the existence of the solutions and forms
(periodic or solitary) and the domain of H, evaluation.
Now we consider the baroclinic model. With sgn(h)= + | and H, satisfying certain condi-
. tions there is likely to be FAP or solitary waves. From the foregoing analysis we have the
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following discriminant conditions.

(4) For b>0,1ie., C,<0, with a? /3<H < a; / 3 there exist FAP or solitary waves (with
H, = ai / 3). And for H, > ai /'3 no nonlinear bounded Rossby waves are available.
(5) For <0, or C.> 0, with — aj /3<H < — a? / 3 there are FAP or solitary waves

(with H = — a? / 3) as well. And for H, > - a? /'3 no nonlinear bounded Rossby waves ex-
ist.

Clearly, Rossby waves appearing at C,> 0 are not existent under linear or
quasi—geostrophic approximation but the product of nonlinear effects only. Hence,
semi—geostrophic approximation is an approach to the study of nonlinear problem, for it is able
to show the nonlineay features of the system to full advantage.

V. EXPLICIT APPROXIMATE SOLUTION OF NONLINEAR ROSSBY WAVES

With the conditions satisfied for nonlinear waves, the implicit expression for the wave solu-
tion can be found by means of the motion invariant, viz.,

1

1=t {[H, ~ V(Q)] dO. (32)
To seek for the explicit approximate solution, the function approximation technique
(Huang et al., 1987) is employed for the barotropic model with sgn(e)=1 and a> 0 as the exam-
ple. It is evident for H, < Hy< H, the related PT is a closed curve around A,, in which Q has a
bounded periodic solution for 7. A cubic polynomial function is used to make approximation to
V(Q)'——HO with the polynomial having the same number and value (Q < 1) of zero points
as V(@)= H,. Thus, the solution of steady bounded waves of ® is found by integrating with

the aid of Eq.(32), namely,
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where Q; (/=1, 2, 3) are three single roots of value <1 with @, > Q,> Q; of the transcendental
equation

- <QT +;71n|Q—l|)=H0. (34)

Evidently (33) gives cnoidal waves. For Hy= H, the PT is a homoclinic trajectory through the
saddle point 4,. For Q satisfying Q,<Q (t=0)<Q, in relation to the initial phase, we find the
solution of solitary waves:
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“where Q, is the single root, and Q,= Q;, the repeated roots of Eq.(34).
To investigate the solutions in the baroclinic model we take the case of sgn(b) =1 for exam-

ple. With a? /3<H, <az /3. Q has a periodic solution for 7. In the way as mentioned before

we achieve the solution of steady bounded waves of ® in the form

_Q3

My li-0,+@,-0)cn’ QTL 2. (36)

ﬂ C,x Kh
where Q, (i=1, 2. 3) are three single real roots (with Q,> 0, > Q,) of the transcendental equa-
tion

Q_—

3 2 2

_Q6__4._2Q__d4Q+d4(Q+d2)ln’Q+d2’=H0. (37

Hence, (36) is the expression of cnoidal waves, too. For H, = ai /3 and with the initial phase

satisfying a, < Q (= 0)<<Q,, there exists the solution of solitary waves in the form

C 5 s 2
b= /; . . (%) [1—(1 +@ -0, )sec” h/ lﬂ( b ] (38)

in which Q, is the single root and a, the repeated root.

Since we have proved that the original issue has the periodic or solitary solution, which re-
mains in the study with the aid of function approximation so that the solution of cnoidal or soli- .
tary waves can be viewed as the explicit solution of first approximation of the FAP and solitary

waves.
It can be inferred from the explicit solution that effects upon wave behavior of zonal—-shear
flow, terrain and stratification are shown both in the constraints of wave formation (Section II)
and in such parameters as wave velocity, length, amplitude and period in association with zonal
shear basic flow, slope of terrain and stratification. Neglecting effects of the flow and terrain
(u + C, }=0, the exact expression of FAP waves is none other than that of cnoidal waves, which

indicates the nonlinear characteristics of nonlinear waves and the effects on wave behavior of
terrain, basic flow and stratification to full advantage.

VI. CONCLUDING REMARKS

Two basic constraints of the solutions of FAP and solitary waves in the barotropic and
baroclinic atmospheres are obtained in terms of the geometric qualitative theory of phase plane
of the dynamic system defined by the second—order nonlinear ordinary differential equation for
the model under semi—geostrophic approximation. And the explicit approximation form of
nonlinear waves is represented by cnoidal or solitary waves. The existence of periodic and
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solitary waves depends on initial phase disturbance, and effects of basic flow, terrain and
stratification on wave behavior are displayed in the existence of waves and their mode (periodic
and solitary). However, the conditions of nonlinear Rossby waves and the pattern, nature of the
solution and representation with actual flow, stratification and terrain given are not dealt with
here, which will be treated in a separate paper.
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