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ABSTRACT

In accordance with a new compensation principle of discrete computations. the traditional meteo-
rological global (pseudo-) spectral schemes of barotropic primitive equation (s) are transformed into
perfect energy conservative fidelity schemes. thus resolving the problems of both nonlinear computa-
tional instability and incomplete energy conservation. and raising the computational efficiency of the
traditional schemes.

As the numerical tests of the new schemes demonstrate, in solving the problem of energy conser-
vation in operational computations. the new schemes can eliminate the (nonlinear) computational in-
stability and. to some extent even the (nonlinear) computational diverging as found in the traditional
schemes. Further contrasts between new and traditional schemes also indicate that, in discrete opera-
tional computations. the new scheme in the case of nondivergence is capable of prolonging the valid in-
tegral time of the corresponding traditional scheme. and eliminating certain kind of systematical com-
putational “climate drift”. meanwhile increasing its computational accuracy and reducing its amount of
computation. The working principle of this paper is also applicable to the problem concerning baroclin-

Ic primitive equations.

Key words: perfect energy conservative fidelity and traditional scheme. nonlinear computational in-

stability and convergence, long valid time. computational efficiency. computational
drift

I. INTRODUCTION

Nonlinear computational instability and convergence are two basic discrete computation
problems which remain unsolved despite the many attempts made by the computational mathe-
maticians and physicists. Retaining the same characteristics of the original continuous system is
also one of the basic discrete computation problems for discrete system. Some recent work
(Zeng and Zhang 1981: Wang and Ji 1990; Zhong 1992a; 1992b; 1992c¢; 1992d). however,
has led to steady improvements even breakthroughs with regard to certain types of maths-
physics problems’ certain basic computational problems.

Some instant (weighted) square conservative schemes (Arakawa 1966; Lilly 1965:
Chang 1977) have long been formulated abroad. In China, Zeng and Zhang (1981) provided
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an “instantly linearized” method for realizing Crank-Nicolson implicit complete square conser-
vative scheme. Wang and Ji (1990) developed an explicit square conservative scheme formula-
tion theory: to formulate an explicit square conservative scheme by adding a variable dissipa-
tion term, and realize a temporal-spatial difference complete square conservative explicit
scheme. However, both the above designs are devoted to the same idea. namely, to transform
control equation (s) of an evolution problem into a special form (symmetric operator form),
then discretize it to formulate the scheme. This approach is somewhat limited. since technical
difficulties may arise in practice, and the validity of the schemes is closely connected with the
form in which the control equation (s) is discretized. moreover, not all important control equa-
tion (s) of evolution problem could be transformed into the special form, baroclinic primitive
equation (s). for instance. Zhong (1991; 1992) has solved the formulation problem of a kind
of perfect (quadratic) square conservative semi-implicit scheme and, in turn, constructed se-
mi-implicit, explicit and (a kind of instantly linearized) implicit complete square conservative
schemes’ design suited for the control equation (s) of evolution problem in any form. More no-
tably, Zhong has observed that the quadratic square conservative scheme formulated by the di-
rect approach is capable of solving both nonlinear computational instability and nonlinear com-
putational convergence, the two basic discrete computation problems mentioned above. and of
constructing the economical computations as well (see Zhong 1992a; 1992¢c: 1992d). More-
over, a fidelity scheme concept is presented, and a general compensation formulation principle
and approach of the fidelity scheme suited for maintaining any characteristic properties of evo-
lution problems at any order accuracy of time difference are set up. Based on this compensation
fidelity computation theory, the time difference-spatial (pseudo-) spectral expansion fidelity
schemes of (weighted) square and nonsquare integral conservation property are respectively
formulated and realized (Zhong 1992b) .

Using the new computation principle of error inverse compensation (Zhong 1992b), this
paper has improved a traditional meteorological (pseudo-) spectral scheme, realized an energy
complete conservative (pseudo-) spectral scheme, solved corresponding nonlinear problems of
computational instability and the problem of retaining energy conservation characteristic. This
paper also tries to demonstrate the great potential of the type of energy complete conservative
schemes in improving the computational effectiveness, prolonging the valid integral time and
increasing the computation accuracy, in solving such problems as “climate drift”™ as well in
constructing economical computations of the traditional schemes. The corresponding principle
and approach used in this paper is also applicable to the problem of retaining other conservative
characteristics of barotropic primitive equation (s) and the case of baroclinic primitive equation
(s).

II. CONTROL EQUATION (S)

The barotropic primitive (“shallow water”) equation (s) describing homogeneous incom-
pressible geophysical fluid with free surface may be written as

Y e fkxv-ve, (1a,b)
d¢—_¢v 'V! (].C)

T
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where V is horizontal wind vector, u and v zonal and meridional wind subvector. @ free surface
geopotential height, f Coriolis parameter, k vertical unit vector, V horizontal gradient opera-
tor. and d/dt time derivative.

In the spherical coordinate, Eqgs. (1a). (1b) and (lc) also can become

LU+ DY + st V(T D) (22)

b Cﬁo SV + ) - cosZso%le(vw + f)J}
!

T acolszqa 2We) + coszgo%(vqy)}— D, (20)

where A. @ and ¢ are longitude, latitude and time respectively; pg=sing; a the radius of the
earth: ¢ and X streamfunction and velocity potential; § (= VZ2¢) relative vorticity, D= (V)
divergence, @ global average geopotential independent of time, ¢'departure geopotential,
&= + & : and scaled wind U. V as follows

__cos'pdp 1 K

U= a p a X’ (3a)
_ 1 3 | cos’pay
= 7R + a (3b)

The enstrophy. energy. angular momentum and mass conservative characteristics of Egs.
(la)., (b) and (Ic) or (2a). (2b) and (2¢) are the following:

2 ('n/2 "y 2

J -[ &+ 7 _L_Df) 4ma*cosp dA dp = constant, 4)
0 J—x/2
2n (n/2 1 . 1

J J [?(uz + P + 7‘15’2 4ma*cosg dA dg = constant, (5)
0 J—n/2
2n (/2

-[ I a®(ucosp + (kos’p)4nalcosp dA dg = constant, (6)
0 —x/2
2n /2

J J &' 4ma*cosp dA dp = constant, &P
0 —mn/2

In the case of nondivergent motions (D=0), its control equation is degenerated as (2a), cor-

responding energy and mass conservative characteristics are

2m /2

_[ J. P4ma’cosep dA dp = constant, 8
0 J—n/2
2 (/2 1

J '[ ?(u2 + v?)4ma’cose dA dp = constant, (9
0 J—x/2

and Rossby-Haurwitz waves are accurate solutions to Eq. (2a). They are also approximate so-
lutions to the equations in the case of divergence.

The barotropic primitive equation (s) as a basic tool is capable of describing the significant
atmospheric and oceanic motions, of which stratification is not a dominating factor (Pedlosky
1979).

III. TRADITIONAL METEOROLOGICAL (PSEUDO-) SPECTRAL SCHEMES

The barotropic primitive equation (s) traditional meteorological (pseudo-) spectral semi-im-
plicit scheme (William 1972) is the following:
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+1 _ pen—1
& ZAtL"m = F{;,., (108)
! — Dit 1(1+1> o
o DR + @5, (10b)
Vi — DL L DM+ DR
A = Fa, TR (10c)
where F¢, FD and F® are respectively the following nonlinear terms:
__ 1 2 Kl
FE == oo UV + D)+ eosp mtV (Vi + ) (11a)
— ]' - 2 _ 2, 2
D = acoszqa{a,l[v(v ¢ + )1 — cos qoa#[U(v ¢ -f—f)]}
U: + ve
— 2
Viia—@’ (11b)
F‘p:_—l——{i(U@) —l—coszgoi(Vd?’)} (11c)
acos’@| IA dp ’

and X7, is a spectral expansion coefficient of variable X in terms of spherical harmonics
Py (p)e™ at time n and X can be any variable of &, D, &, F¢. FD or F®. The spectral ex-
pansion coefficient of nonlinear term is determined by spectral transform method (Machen-
hauer 1981).

IV. ENERGY COMPLETE CONSERVATIVE (PSEUDO-) SPECTRAL SCHEMES

In accordance with the compensation principle, the energy conservative scheme for
barotropic primitive equations of full discrete computations can be formulated as follows

Gk _ g, 4 eBE, (128)
ntl— Dp, I
H gy, + S5 Do 4 ey, (12b)
fnt+1 _ 71
W — @m _ n+1 + eanjlnm (lzc)
Schemes (12a), (12b) and (12¢) can also be written as
=X, + eX,. (13)
Compensation operator BX can be taken as
. X" — 2X/ + X
BX = —Qoa (14>

X, X,nare determined by (12a), (12b) and (12¢). X' and X” are respectively the first and
second step integral values of (12a), (12b) and (12c) while €” is considered as zero, At time
step and X" initial value. Here, X = {{, D, & }.

In the case of divergent motions. towards retaining energy (weighted square) conserva-

tive characteristic, the compensation coefficient can be taken as
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‘1+A1/°+\/ — A, A>0
ya
3ae + 2( 3 cosﬁ
A< s |cosf| < |cos(8 + 120°) |, |cosf| << |cos(d + 240°) |
£ = < p 1/2
3a ( - ?) cos(f + 120%),
A0, [cos(d 4+ 1207 | << |cosf|, |cos(d + 120°) | < |cos(d + 240°) |
172
+ 2( — 2] cos(8 + 2407
Saf 3
AL 0, < |cosf|, [cos(f + 240°) | < |cos(d + 120%) |
(15>
where
¢ b
p= @ a3 (16)
2 _be i
9= 975 7 32 + 2’ an
a\ 2V
a=(4 + | 3) : (18)
- l _l _£ *3/2} )
0 = 5 arccos Zq( 3 ) , (19
KX Kz UZ + VZ
ac= 2,2 5 G (20)
= ly=1
K K ~ Py ~ 2
N (O, + 7 ~ 0.0.,+V., V. :
-\ { 1P & i i IFASY. Y @r }G(l‘z),
b 1611]:1 2(1_#;7_)( + 9P )0+ 1 — ) o', + ) @D
K K o~ P ~
NH0.0.,+ V. V. 0:, +v? ~ } .
_ N\ Gy AR y 1% X & &, Ky
¢ Zé’l{ — @+ &, )+ 27— )ép + &', &, )G (22)
K& 0+ 7
-\ [_IJ—U b} @ 5/9 }G(KZ) — E,,
d &2 2(1_#)( + &0+ 5 0 (23)
Kl KZ + V
Eo = E {20(,1]—_"02(¢ + ¢’o, ]) + (plm ,} WKK )9 (24)
=13 =1
m Lim)
T, = Z Z i 7 ()™ (25
m=—m 1= | m|
herex,, =@, ,,®".,, 2 =4, D 1 N
m L) m
L Zd=—a b ey 42D
Yoye Zis) “mfm Z {1(1 F D ) = A T #Ze g,
1 o 2 dP;"(/”;) imA

here {Y.,jv Z.,,} = {U.‘,,- V..,}s {ﬁx,j9 v.'.,}9 {Yins Ztn) = {Elm9 zzm} ’ {Dlm9 Zitm}- The PhySi‘

cal meaning of @ demands
=P+ >=0. Qn



318 ACTA METEOROLOGICA SINICA Vol. 9

Thereby. instead of &. its absolute value can be taken in practice. It can be easily proved that
scheme (12) is now a weighted square energy complete conservative scheme.
In the case of nondivergent motions, toward retaining energy (square) conservative char-

acteristic, the compensation coefficient can be taken as

C
€"=—52[1— 1—%9], (28)
02, + V2
(K) o
_lelc; = (29
L& 0.0, +V.,7
— (K,) iy P MRV}
Com 2207 2=l 30
U: + V1 Ugr - V(Z)l
(K) J 7 " 7]
ZIZ;G 201 — 4 ’ G
G — L= 1) (32)

N (K, Pk, 1 ()%
In all the formulas in this section, G{¥#' is referred to as Gaussian weighted factor. X, ,as initial
value of variable X at grid point G. ), X={U. V., &'}. It can be easily proved that Scheme
(12) is a square energy complete conservative fidelity scheme.
It is clear that as a weighted square or a square energy complete conservative fidelity
scheme, Scheme (12) is a stable scheme capable of completely solving both linear and nonlin-

ear computational instability problems.
V. NUMERICAL TEST

Since Phillips' s work was presented in 1959, Rossby-Haurwitz wave test has become a
routine test for barotropic primitive equations scheme. This is mainly because Rossby-Haurwitz
wave is not only meteorologically significant, but also an approximate solution in the case of di-
vergent motions and an accurate solution to nondivergent motions of the nonlinear equations.

Physically initial conditions of Rossby-Haurwitz wave test here are taken as follows. Non-
divergent initial velocity (D=0) is determined by streamfunction (see Fig. 1) :

¢y =— atAsing + a*A, cos™g sing cosm,A, (33
and initial geopotential @, has the form
D, = & + a’A(9) + a?B(@cosm,A + a*C (@) cos2myA, (34)

A(p) = %AO(ZO + Ay)cosp + %A%cosz”'oqo ((m, + 1)cosep

+ (2md — my — 2) — 2micos™ @), (35)
2@ ADA B .

B(p) = no F D Gmg + 2% @ ((mi + 2my + 2) — Une + 1)°cos’y], (36)

Clp) — %A%cosz"‘ogoﬁ(mo 4 Dcosto — (my + D). (37)

Operationally, the truncation of spherical harmonics is trapezoidal. with maximum trun-
cated number of 11; the number of regularly-spaced longitudinal grid points is 32, and 26 of
Gaussian latitudinal grid points. Other parameters are taken as 4, = A, = 3. 924 X 107 %7},

my =14, a=6371X10°m, & =7.84X10*m, 2=7.29X107%s"'. A computational initial
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condition of traditional scheme (10) is produced by a commonly used half time step integra-
tion, i.e., let computational initial values at time t=A¢/2 be equal to the values at time t=0,
forward integrate a step with time step value Az/2, then forward calculate routinely with time
step value Az. Besides, the schemes are run on computer Convex-1 Institute of Atmospheric
Physics. The codes employ single precision arithmetic (7 significant digits), although the req-
uisite associated legendre polynomials are generated in double precision.

Contrast test between the traditional scheme (10a—c) and the new conservative scheme
(12a—c) in an ordinary (divergent) case with physically initial conditions (33 —34) demon-
strates that in the traditional scheme, there is a critical time step (about 100 min.): when
time step is shorter than the critical value, the computational relative error of conservative en-
ergy. enstrophy and angular momentum global integration all vary in a way of the three step
regularity: oscillation variation —symmetric oscillation increasing — rapid asymmetric increas-
ing. which can not be altered by reducing time step value (test margin: time step 2> 10 min. ,
though conservative mass global integration is retained, and its stable integral time is less than
190 days (see Fig. 2); when time step is greater than this critical value. the error of the con-
servative integrations increase rapidly (nonlinear computation instability) . its stable integration
time grows much shorter than 190 days. Namely, there arises a type of systematical “climate
(computational) drift”.

For the new energy weighted square conservative semi-implicit fidelity scheme, its energy
as well as mass conservative characteristic is well retained (see Figs. 3a and 3b)., its stable inte-
gration time is much longer than 190 days. and its stable integral step is greater than the criti-
cal value (100 min.) of the traditional scheme. Note, for instance, its stable integral time can
reach 800 or more days at integral time step 6 hours. Besides, in the same test, the maximum
value of stable integral step of an explicit conservative scheme can merely reach approximately
15 min. This shows that the semi-implicit conservative scheme is capable of greatly reducing
the overall amount of computation as compared with the explicit conservative scheme.

For the divergent problems. although the basic performance of the scheme could be
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conservative fidelity semi-implicit (pseudo-) spectral scheme of divergent barotropic primitive equa-

tion, integral step 6 h. integral time 800 d, single precision arithmetic).

(X 1076)
30 (a)

3 15

£ 0

¢ —15

=~ 30 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

®

>

b

T

<

Z 16 (b)

e U _ d
39 € &8 g g g g8 g g g § &g
= s £ £ £ § & E g =& =

Number of integral step
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tegral time (@) 35d; (b) 70d).

checked to some extent, they could not be determined objectively and accurately by the pres-
ence or absence of metamorphosis of the wave for stable numerical integrations, as Rossby-
Haurwitz wave (33) is merely an approximate solution. Further contrast test between tradi-
tional meteorological and new type energy conservative scheme (10a) and (12a) of nondiver-
gent barotropic primitive equation or vorticity equation is conducted. since Rossby-Haurwitz
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Fig. 5. The computed streamfunction of Rossby-Haurwitz wave (traditional (pseudo-)spectral scheme of
nondivergent barotropic primitive equation. integral step 10 min.. integral time: (a) 60d: (b) 70
d.
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Fig. 6. The computational variations of conservative global integration of kinetic energy (a) and enstrophy
(b)Y (kinetic energy conservative fidelity explicit (pseudo-) spectral scheme of nondivergent
barotropic primitive equation. single precision arithmetic. integral step 3 h. integral time: (a) 150
d: b 100 d>.

wave (33) is now its accurate solution, and the test could therefore be more objective and
clear. The test has demonstrated that, similar to the divergent case of the traditional scheme,
there is a critical time step (about 320 min.); when time step is shorter than this critical val-
ue, the computational relative error of conservative energy and enstrophy global integration
both display a three step variation regularity: oscillation variation-symmetric oscillation increas-
ing-rapid asymmetric increasing (see Table 1 and Figs. 4a and 4b), and the duration for nearly
retaining the wave pattern is approximately 60 days (<(70 days) (see Figs. 5a. 5b). They can
not be altered by reducing time step value. When time step is greater than this critical value,
the error of the conservative integrations increase rapidly (nonlinear computation instability) .
its stable integration time is much shorter than 60 days. There also exists the same kind of sys-

tematical “climate (computational) drift”.
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Fig. 7. The computed stream function of Rossby-Haurwitz wave (kinetic energy conservative fidelity
(pseudo-) spectral scheme of nondivergent barotropic primitive equation, integral step 3 hours. in-

tegral time: (@ 90d; (b 150d).

The Computed Variations of the Conservative Kinetic Energy and Enstrophy Global Integrations
(The Traditional (Pseudo-) Spectral Scheme of Nondivergent Barotropic Primitive Equation, In-

Table 1.

tegral Step 10 min., Single Precision Arithmetic)

Day Kinetic energy (m?/s) Enstrophy (m?/s) |Day Kinetic energy (m*/s) Enstrophy (m?/s)
0 0.1220760 E+5 0. 8847784 E—8 30 0.1220771 E+5 0. 8847945 E—8
35 0.1220796 E+5 0. 8848321 E—8 40 0.1220877 E+4+5 0. 8849525 E—38
45 0.1221150 E+5 0. 8853549 E—38 50 0.1222102 E+5 0. 8867624 E—8
55 0.1225634 E+5 0.8919797 E—8 60 0.1241432 E+5 0.9152241 E—8
65 0.1348819 E+5 0.1071767 E—8 70 0.2136956 E+5 0. 9839725 E—8

>70 overflow overflow

For the new kinetic energy square conservative explicit fidelity scheme. except for com-
puter round-off error, both its energy and enstrophy conservative characteristic are completely
retained (see Table 2 and Figs. 6a. 6b). thereby the problem of nonlinear computational
instability is eliminated. Also solved is the problem of nonlinear computational convergence
within the integral time (90 days) much longer than the useful integral time of the traditional
scheme (compare Figs. 5a, 5b and Fig. 7a), thereby the “climate drift” problem is solved as
well (see and compare Fig. 1, Figs. 6a. 6b. 7a, 7b and Figs. 4a, 4b. 5a. 5b: Tables 2 and
1). However. there is no equivalent theorem of nonlinear computational stability and conver-
gence (see Fig. 6a and Fig. 7b). In contrast with the traditional scheme, the kinetic energy
conservative fidelity scheme is capable of greatly prolonging its valid integral time and in the
same time, greatly increasing its accuracy and reducing its amount of computations (compare
Table 1, Figs. 4—5 and Table 2, Figs. 6—7). The convergent valid time step of the fidelity

scheme can reach as long as 57 hours.
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Table 2. The Computed Variations of the Conservative Kinetic Energy and Enstrophy Global Integrations
(A Kinetic Energy Conservative Fidelity (Pseudo-) Spectral Scheme of Nondivergent Barotropic
Primitive Equation, Integral Step 3 h. Single Precision Arithmetic)

Day Kinetic energy (m®/s) Enstrophy (m?/s) |Day Kinetic energy (m*/s) Enstrophy (m?/s)
0 0.12207602 E+5 0.8847784 E—8 30 0.12207600 E+5 0. 8847788 E—8
35 0.12207602 E+5 0. 8847789 E—8 40 0.12207602 E+5 0.8847784 E—8
45 0. 12207601 E+5 0. 8847786 E—8 50 0.12207601 E+5 0.8847789 E—8
55 ,0.12207602 E+5 0.8847784 E—§& 60 0.12207604 E+5 0.8847788 E—8
65 0.12207602 E+5 0.8847786 E—8 70 0.12207604 E+5 0.8847784 E—38
75 0.12207600 E45 0.8847784 E—8 80 0.12207601 E+5 0.8847789 E—8
85 0.12207601 E+5 0. 8847786 E—8 90 0.12207604 E+5 0. 8847788 E—8
95 0.12207601 E+5 0.8847791 E—8 100 0.12207600 E+5 0.8847792 E—8

V. SUMMARY AND DISCUSSION

The sources for all the basic problems of discrete computations can be attributed to the e-
merging of errors of discrete computation. If we are able to completely eliminate the error ac-
cording to its sources and the way it is introduced. then we are able to calculate exactly. The
present work is to. based on the principle of retaining the conservative characteristic (s) of the
original continuous problem, formulate a new type of energy complete conservative scheme by
means of compensating thereby eliminating the discrete computational errors averagely and ac-
cordingly at each computational grid (component) of the corresponding traditional barotropic
primitive equation (s) spectral scheme in accordance with the sources of the errors and the way
they emerge. The new schemes thereby possess better performance than the traditional ones,
and such improvements could be of fundamental significance. Further numerical contrast test
between the new energy conservative and traditional schemes related to the Rossby-Haurwitz
wave, the accurate solution. has also confirmed this inference. For instance, as the contrast
test reveals. there is a kind of systematic error existing in the traditional scheme which leads to
a type of “climate drift” phenomena incapable of being eliminated by reducing time step value.
The new scheme can prolong its useful integral time by more than 50 percent with 18 times its
original time step (averagely. about one-ninth its amount of computation). and make it possi-
ble for the computational solution converging to the physical one with more computer round-off
errors. All these mean that, in contrast with the traditional scheme. the new energy complete
conservative fidelity scheme does have higher computational accuracy. longer valid integral
time. and greater computational efficiency. The new scheme design has theoretically and oper-
ationally solved both nonlinear computational instability and the problem of retaining energy
conservative characteristic. It has also provided an operational case for resolving nonlinear com-
putational diverging as found in traditional scheme to some extent.

It needs to be pointed out that time discrete errors are conventionally regarded as trivial
(Jiang et al. 1989) and yet, as revealed in this work and other studies (Wang and Ji 1990:
Zhong 1992a; 1992c; 1992b), many significant improvements in the quantity and quality of
the performance of the scheme are exactly obtained by reasonably eliminating systematic errors
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appearing in time discrete computation. It therefore becomes evident that this conventional

view does not universally hold true, and reconsideration is required.
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