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ABSTRACT

' By using simple barotropic boundary layer equations with constant eddy viscosity, the analytical solution
is obtained under the initial condition that the distribution of wind for a given pressure is not the well-known
Ekman flow. We have found that the wind will finally adjust to the Ekman flow at a rate faster than that of
geostrophic adjustment. We have also found that the thinner the boundary layer, the faster the rate of adjustment.

In the free atmosphere, the wind field is basically in geostrophic balance with the pressure
field. However, in some local regions, the geostrophic departure may exist. It will be dis-
persed through the effect of gravity-inertial waves, and finally, the geostrophic balance can
be established again. A lot of work has been done on geostrophic adjustment. Similar to the
feature of the quasi-geostrophic flow in the free atmosphere, the wind within the boundary
layer is mainly expressed by the Ekman flow, which is a result of balance between the pressure
gradient force, the Coriolis force, and the viscous force. In the boundary layer, there exists
the problem like that of geostrophic adjustment. For example, if the initial wind field is not
in the form of Ekman flow, what will happen? By what effects will the Ekman balance be
established? Up to now, little discussions have been made on these questions. In this paper,
we will preliminarily analyze this adjustment process using the simplest model.

1. PROBLEM

A set of linearized equations which describe the horizontal motion in the planetary
boundary layer can be written as
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where u,v are the velocity components along x, y directions, respectively; f is the Coriolis
parameter; p pressure; p density; and k the coefficient of turbulent eddy viscosity. In this
paper, we consider f, p and k as constants.

We assume that the boundary layer is barotropic, therefore the pressure gradient force is
independent of height throughout the boundary layer. By using u,,v, to denote components
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of the geostrophic wind in the x, v directions, respectively, then Eqs. (1) and (2) may be
rewritten as

au ‘
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The initial conditions for Eqgs. (3) and (4) are
t=0, u=ug(l—e=%), (5)
U=Ug(l_e_az), - (6)
where ¢ is a parameter. The wind field expressed by Egs. (5) and (6) has two features as follows:
(1) Asz=0, then u=v=0; , (7)
as z—oo0, then u—uy v—v,. (8)

Eq. (7) expresses that the fluid at the lower boundary is non- shpped and Eq. (8) expresses
that the wind velocity at the top of the boundary layer must approach its geostrophic value.
We choose Egs. (7) and (8) as the boundary conditions for Egs. (3) and (4).

2) As g= \/ —2fl? (1+1i), then distribution of wind velocity expressed by Egs. (5) and

(6) is in agreement with that of classical Ekman flow. As g+ \/ ZfE(l +1), for example, &

is a positive real number, the initial wind field differs from the Ekman flow. Our problem is
to study how the wind field, which is not in agreement with the Ekman flow, will change.

II. THE STEADY STATE MOTION

At first, we will qualitatively investigate what kind of characteristic motion the non-
Ekman flow will reach eventually.
It is conventional to designate the geostrophic wind ug,v, 4s

on 8zr .

X =f Ugy f Ugs ( 9 )
where s denotes the geopotential height from mean value, which is unchanged with height
because of the initial assumption that the boundary layer is barotropic. Consequently, from
Egs. (3) and (4) we may get the vorticity equation and the divergence equation:
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where ¢ and D are relative vorticity and divergence, respectively, namely,
ov  Bu ou
=0 oy Doty (12)
Introducing streamfunction ¥ and velocity potential function @, we have
hd _W g
U= — ay+ax9 U= ax+ay, (13)
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and
L=v¥, D=vgp. (14)
Substituting Eq. (14) into Egs. (10) and (11) yields
v a v
v ( 2 >~0. (15)
. 0P A
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For a wave-type disturbance the horizontal Laplacian operator is proportional to the
modulus of the wavenumber vector. Therefore, V2 may be removed and Egs. (15) and (16)
may be written as:
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Consequently, Eqgs. (5)—(6) are reduced to

tzo,(p:o,wz’;-(lwe-“), (19)
z=0, =0, ¥=0, (20)
z—o0, @=0, W=*g;:‘. (21)

From Egs. (17) and (18), we can obtain the steady solution ¥, @, which satisfy

f5-42% o, (22)

f@‘ﬁ‘l—k’aa:j =9. (23)

This is the steady solution or the solution in equilibrium state, in fact, just the classical
Ekman solution.
Elimination of ¢ from Eqs. (22) and (23) yields

ov | I fo
+k2g/ kz (24)
Solving the equation with the boundary conditions
z=0, ¥=0, ¢=0, (25)
z->00, =0, 2.1/—1;— (26)
we get the solution of Eq. (24) as follows
_ fi —fi :
= 4 iz - [z
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and from Eq. (22), we have
o fi —fi
_ i -z it LS
‘P:’ET(F ¢ ’e‘/ ’ ) (28)
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Thus, for a given # field, & and @ field can be obtained. Using Eq. (13), we can get
wind field as

AN
7+ z7=(ug+zvg)<1—e ‘/Zk (1+4)= ), (29)
this is the classical Ekman flow.
III. VARIATIONS OF THE PART OF NON-EQUILIBRIUM
Suppose gz is independent of height > as well as time ¢, and set
T, .
w=¥/—’f Tig, (30)

then Eqgs. (17) and (I18) can be combined in

R A (31)

The initial and boundary conditions of Egs. (19)—(21) now can be written as

t=0, w=— 'f’e_uz, (32)
220, w= — ?’ (33)
z2—>00, w=40. (34)

With Laplacian transformation, we can obtain

”[ ‘/2); (1-i)z erfc<~*~;—:* th+szt>+e 2k (1-i)z
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As f—oo, Eq. (35) tends to
W — ’;e-‘/i%“‘”z : (36)
On the other hand, substitution of Eqs. (27) and (28) into (3) yields the steady state of w as
w=F -7+ ip=— ?e"/%(l_i)z : (37)

By comparing Eqs. (36) with (37), it is easy to find that the steady solution Eq. (35) is just
the Ekman flow. We arrive, through analytical method, at the same conclusion that the steady
state of motion is Ekman flow.

Next we will investigate the change of the non-steady state component.

In terms of an approximate formulation

erfc(x+iy) =1—erf(x+iy)%1—[ erf(x) +f>2}1;;c"e""2(1—COSnyJrisiany):l,(38)
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we can approximately obtain

zlw_ l/gk (cos\/fz—{—zsm f ){1—erf<~/th—\/"g>
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Let D, be the divergence part of the non-steady state
D= (o-5), (40)
and the real form of Eq. (28) is wntten as
¢=— " sm‘/—~z (41)

Since @ is the imaginary part of w, with these expressions, then we have
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The first term on the right hand side expresses the inertial oscillation with frequency f, and
its amplitude tends to zero with ¢ increasing. So does the second term. Since these two terms
involve the frequency of the inertial oscillation f and the coefficient of turbulence eddy viscosity
k, it is evident that the part of non-Ekman balance tends to be trivial under the influence of
dispersion of the inertial oscillation and dissipation of the turbulence viscosity.

If take z=n\/ 2;’ , then the second term of Eq. (42) tends to zero. If ¢ is large enough,

we have
T 1 . :
= —\/*zf* ?k;s‘/‘g'*smft. (43)

1Iv. CONCLUSIONS

Comparing Eq. (43) with the example of geostrophic adjustment, the following conclusion



No. 1 THE ADJUSTMENT OF WIND EKMAN FLOW 25

remarks can be obtained.

First, we find that the part of non-Ekman balance tends ultimately to zero under the
influence of the dispersion of the inertial oscillation and the dissipation of the turbulent
viscosity, and the wind velocity always adjusts to Ekman flow.

In the case of geostrophic adjustment, there is an approximate expression (Wu, 1983)

1
(p(O,O,t)“V?COSft, (44)

where ¢ (0,0,7) is the potential function of wind at the center (0,0) of a region where the in-
tense ageostrophic component occurs. Furthermore, from Eq. (43), we can get

1 .
D1~;37lenff. (45)

Comparing the powers of ¢ in the denominators in Egs. (44) and (45), we obtain the second
conclusion that the Ekman adjustnient process is faster than geostrophic adjustment process.

In addition, from Egs. (5) and (6), we can find that the larger the @, the lower is the
height where 4, v equal ug, vy respectively, meaning that the thinner the depth of the boun-
dary layer will be. Since the wind velocity at this height approaches geostrophic wind, the re-
lation between wind and pressure fields hold the geostrophic balance. Thus the effect of the
turbulent viscosity is so small that it may be neglected. From Eq. (43) we see that the larger
the @, the smaller the | D, |, i.e. the smaller the ¢ at which I, is equal to minimum. Therefore,
our third conclusion is that the thinner the boundary layer, the faster the rate of Ekman
adjustment process is.

Owing to the assumption that the pressure field does not change with time, the interaction
between the free atmosphere and boundary layer can not be considered. The further study of
coupling these two layers will be meaningful.
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