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ABSTRACT

Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre
for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers
for Environmental Prediction), and UKMO (United Kingdom Met Office) in THORPEX (The Observing
System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) datasets, for
the Northern Hemisphere (10◦–87.5◦N, 0◦–360◦) from 1 June 2007 to 31 August 2007, this study carried out
multimodel ensemble forecasts of surface temperature and 500-hPa geopotential height, temperature and
winds up to 168 h by using the bias-removed ensemble mean (BREM), the multiple linear regression based
superensemble (LRSUP), and the neural network based superensemble (NNSUP) techniques for the forecast
period from 8 to 31 August 2007.

The forecast skills are verified by using the root-mean-square errors (RMSEs). Comparative analysis of
forecast results by using the BREM, LRSUP, and NNSUP shows that the multimodel ensemble forecasts have
higher skills than the best single model for the forecast lead time of 24–168 h. A roughly 16% improvement
in RMSE of the 500-hPa geopotential height is possible for the superensemble techniques (LRSUP and
NNSUP) over the best single model for the 24–120-h forecasts, while it is only 8% for BREM. The NNSUP
is more skillful than the LRSUP and BREM for the 24–120-h forecasts. But for 144–168-h forecasts, BREM,
LRSUP, and NNSUP forecast errors are approximately equal. In addition, it appears that the BREM
forecasting without the UKMO model is more skillful than that including the UKMO model, while the
LRSUP forecasting in both cases performs approximately the same.

A running training period is used for BREM and LRSUP ensemble forecast techniques. It is found that
BREM and LRSUP, at each grid point, have different optimal lengths of the training period. In general, the
optimal training period for BREM is less than 30 days in most areas, while for LRSUP it is about 45 days.
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1. Introduction

As the atmosphere is a nonlinear dissipative sys-
tem, the numerical weather predictions are restricted
by the model physical parameterizations, initial er-
rors, boundary problems, etc. Therefore, it may take
quite a long time to improve the weather forecast skill
for a mature single model and that is why scientists
have long before put forward the idea of ensemble fore-

casting (Lorenz, 1969; Leith, 1974; Toth and Kalnay,
1993).

Nowadays, numerical weather prediction is devel-
oping from traditional deterministic forecast to ensem-
ble probabilistic forecast. Along with the rapid devel-
opment of communication, networking, and computers
as well as other technologies, international cooperation
in weather forecasting has become much closer, es-
pecially when The Observing System Research and
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Predictability Experiment (THORPEX) Interactive
Grand Global Ensemble (TIGGE) data are available.
TIGGE is a key component of THORPEX, and the
latter is contained in the WMO (World Meteorological
Organization) World Weather Research Programme.
THORPEX aims to accelerate the improvements in
the accuracy of 1-day to 2-week high-impact weather
forecasts. The TIGGE project has been initiated to
enable advanced research and demonstration of the
multimodel ensemble concept and to pave the way to-
ward operational implementation of such a system at
the international level (Park et al., 2008; Bougeault et
al., 2010).

Krishnamurti et al. (1999) proposed a so-called
multimodel superensemble forecasting method, which
is a very effective post-processing technique able to
reduce direct model output errors. In his subsequent
multimodel superensemble forecast experimentation of
850-hPa winds, precipitation, and track and inten-
sity of tropical cyclones, it was revealed that the su-
perensemble forecast significantly reduced the errors
compared with the individual models and the multi-
model ensemble mean (Krishnamurti et al., 2000a, b,
2003, 2007a). The 24–144-h superensemble forecasts
of 500-hPa geopotential height indicate that the su-
perensemble achieved a higher ACC (Anomaly Corre-
lation Coefficient) skill than the best single model fore-
cast. Rixen and Ferreira-Coelho (2006) conducted a
superensemble of multiple atmosphere and ocean mod-
els by utilizing linear regression and nonlinear neural
network techniques, and made the short term forecast-
ing of sea surface drift along the west coast of Por-
tugal. Their results indicate that the superensemble
of the atmosphere and ocean models significantly re-
duced the error of 12–48-h sea surface drift forecast.
Cartwright and Krishnamurti (2007) pointed out that
the 12–60-h superensemble forecast of precipitation in
the southeastern America during summer 2003 is more
accurate than that of each single model. In the su-
perensemble forecast of precipitation during the on-
set of the South China Sea monsoon, Krishnamurti
et al. (2009a) found that the superensemble fore-
casts of precipitation and extreme precipitation during
landfalling typhoons exhibited a higher forecast skill

than the best single model forecast. Further studies
by Zhi et al. (2009a, b) show that the forecast skill
of the multimodel superensemble forecast with run-
ning training period is higher than that of the tra-
ditional superensemble forecast for the surface tem-
perature forecast in the Northern Hemisphere midlat-
itudes during the summer of 2007. After various fore-
cast experiments, it was proved that the superensem-
ble method may significantly improve the weather and
climate prediction skills (Stefanova and Krishnamurti,
2002; Mishra and Krishnamurti, 2007; Krishnamurti
et al., 2007, 2009; Rixen et al., 2009; Zhi et al., 2010).

However, it could be possible for an individual
model ensemble to outperform a multimodel ensemble
containing poor models (Buizza et al., 2003). There-
fore, the multimodel ensemble forecast technique and
its applications need to be further investigated. It is
necessary to study comparatively the characteristics
of different multimodel ensemble forecasting schemes.

2. Data and methodology

2.1 Data

The data used in this study are the daily ensemble
forecast outputs of surface temperature, and 500-hPa
geopotential height, temperature, and winds at 1200
UTC from the European Centre for Medium-Range
Weather Forecasts (ECMWF), the Japan Meteorolog-
ical Agency (JMA), the US National Centers for Envi-
ronmental Prediction (NCEP), and the United King-
dom Met Office (UKMO), in the TIGGE archive. The
characteristics of the four models involved in the mul-
timodel ensemble forecast are listed in Table 1 in ac-
cordance with Park et al. (2008).

The forecast data of each model cover the period
of 1 June to 31 August 2007, with the forecast area in
the Northern Hemisphere (10◦–87.5◦N, 0◦–360◦), the
horizontal resolution of 2.5◦×2.5◦, and the forecast
lead time of 24–168 h. The NCEP/NCAR reanal-
ysis data for the corresponding meteorological vari-
ables were used as “observed values”. Note the area
and the horizontal resolution of the NCEP/NCAR re-
analysis data are consistent with those of the TIGGE
data.
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Table 1. Characteristics of the four TIGGE ensembles
Operation center Initial perturbation method (area) Horizontal resolution Forecast length (day) Perturbation members

UKMO BVs (globe) T213 10 15

JMA BVs (NH+TR) T319 9 51

ECMWF SVs (globe) TL399/TL255 0–10/10–15 102

NCEP BVs (globe) T126 16 84

Note: BVs stand for Bred Vectors and SVs for Singular Vectors. NH stands for Northern Hemisphere and TR for tropics.

2.2 Methodology

2.2.1 Linear regression based superensemble forecast-
ing

The multimodel superensemble forecast is formu-
lated after Krishnamurti et al. (2000a, 2003). At
a given grid point, for a certain forecast time and
meteorological element, the superensemble forecasting
model can be constructed as:

St = O +
n∑

i=1

ai(Fi,t − F i), (1)

where St represents the real-time superensemble fore-
cast value, O the mean observed value during the
training period, Fi,t the ith model forecast value, F i

the mean of the ith model forecast value in the training
period, ai the weight of the ith model, n the number
of models participating in the superensemble, and t is
time.

The weight ai can be calculated by minimizing
the function G in Eq. (2) below with the least square
method. The acquired regression coefficient ai will
be implemented in Eq. (1), which creates the super-
ensemble forecasts in the forecasting period.

G =
Ntrain∑

t=1

(St − Ot)2. (2)

It should be noted that the traditional su-
perensemble employs a fixed training period of a cer-
tain length, while an improved superensemble pro-
posed by Zhi et al. (2009a) applies a running train-
ing period, which chooses the latest data of a certain
length for the training period right before the forecast
day. The linear regression based superensemble using
running training period will be abbreviated as LRSUP
hereafter.
2.2.2 Nonlinear neural network based superensemble

forecasting
In addition to the linear regression method, the

three-layer back propagation (BP) of nonlinear neu-
ral network technique (Geman et al., 1992; Warner

and Misra, 1996) is implemented for the superensem-
ble forecast (hereafter abbreviated as NNSUP). Dur-
ing the training period, the output from each model is
taken as the input for the neural network learning ma-
trix. During the forecast period, the well-trained net-
work parameters are carried into the forecast model to
obtain the multimodel superensemble forecasting (Ste-
fanova and Krishnamurti, 2002; Zhi et al., 2009b).
2.2.3 Bias-removed ensemble mean and multimodel

ensemble mean
Bias-removed ensemble mean (hereafter abbrevi-

ated as BREM) is defined as

BREM = O +
1
N

N∑

i=1

(Fi − F i), (3)

where BREM is the bias-removed ensemble mean fore-
cast value, and N the number of models participat-
ing in the BREM. The running training period is also
adopted in the BREM technique.

In addition, the multimodel ensemble mean (here-
after abbreviated as EMN) is performed and used as
a cross-reference for the superensemble forecasts.

EMN =
1
N

N∑

i=1

Fi. (4)

In the verification of the single model forecasts
and evaluation of the multimodel ensemble forecasts,
the root-mean-square error (RMSE) is employed.

RMSE = [
1
n

n∑

i=1

(Fi − Oi)2]
1
2 , (5)

where Fi is the ith sample forecast value, and Oi is
the ith sample observed value.

3. Results

3.1 Comparative analyses of linear and non-

linear superensemble forecasts

Based on the ensemble mean outputs of the 24–
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168-h ensemble forecasts of surface temperature in
the Northern Hemisphere from the ECMWF, JMA,
NCEP, and UKMO, the multimodel superensemble
forecasting was carried out for the period of 8–31 Au-
gust 2007 (24 days). The length of the running train-

ing period was set to be 61 days.
As shown in Fig. 1, for the 24–168-h forecasts in

the entire forecast period, the superensemble forecasts
(LRSUP and NNSUP) together with the multimodel
EMN and BREM reduced the RMSEs by some means

Fig. 1. RMSEs of the surface temperature forecasts from the ECMWF, JMA, NCEP, and UKMO together with

the multimodel ensemble mean (EMN), bias-removed ensemble mean (BREM), linear regression based superensemble

(LRSUP), and neural network based superensemble (NNSUP) at (a) 24 h, (b) 48 h, (c) 72 h, (d) 96 h, (e) 120 h, (f) 144

h, and (g) 168 h from 8 to 31 August 2007 in the Northern Hemisphere (10◦–80◦N, 0◦–360◦).
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compared with the single model forecasts. With the
extension of forecast lead time, the forecast skill im-
provement decreased. For the 24–120-h forecasts, the
RMSEs of the LRSUP and NNSUP were much smaller
than those of the single model forecasts, and the
BREM also had improved forecast skills to some ex-
tent. When the forecast lead time was longer, e.g.,
144–168 h, the BREM forecast skill caught up with
that of LRSUP and NNSUP in terms of the RMSEs.
Therefore, for the summer Northern Hemisphere sur-
face temperature, the multimodel ensemble forecast
performed better than the single model forecast. Al-
though the forecast improvement decreased with the
forecast lead time, the forecast results remained sta-
ble. The NNSUP was skillful and outperformed the
BREM and LRSUP for the 24–120-h forecasts. But
for the 144–168-h forecasts, the errors of the BREM,
LRSUP, and NNSUP were approximately equal.

In addition, the above analysis shows that the
NNSUP was reasonably better than the other fore-
cast schemes, because the NNSUP scheme might have
reduced the forecast errors caused by the nonlinear
effect among various models. However, repetitive ad-
justment of the neural network parameters had to be
performed to obtain the optimal network structure,
which slowed down the operation efficiency. Mean-
while, BREM and LRSUP had the advantage of be-
ing computationally simple with reasonable accuracy;
they were easier to be implemented for forecasters
in their daily operation. In the following, the mul-
timodel ensemble forecast schemes of BREM and LR-
SUP (hereafter further abbreviated as SUP) will be
employed to give a multimodel consensus forecast of

500-hPa geopotential height and temperature as well
as the zonal and meridional wind fields for compara-
tive analysis.

3.2 SUP and BREM forecasting of 500-hPa

geopotential height

The SUP method for 24–72-h forecasts of the 500-
hPa geopotential height had a high forecast skill. Es-
pecially, for 24-h forecast, it performed much better
than the optimal single model forecasting (figure omit-
ted). Figure 2a shows that the average RMSE of the
96-h SUP forecasts was very close to that of the best
single model ECMWF forecast, while the BREM had
a lower forecast skill than the ECMWF forecast most
of the time. For longer forecast lead time, this was
also the case (figure omitted).

The overall low forecast skill of the SUP and
BREM at longer than 96-h forecast lead time may
be attributed to the difference in the forecasting ca-
pability of each model in different latitudes as well as
the systematic errors of the models. In addition, it
is unreasonable that the length of the training period
at all grid points is fixed at 61 days for the SUP and
BREM. In the following, the optimal length of the
running training period will be examined at each grid
point before the SUP and BREM forecasts are con-
ducted.

As shown in Fig. 2, the RMSEs of the super-
ensemble with optimized training (O-SUP) are smaller
to some extent than those of the superensemble with-
out optimized training (SUP). The optimal BREM (O-
BREM) forecast is also better than the BREM fore-
cast.

Fig. 2. RMSEs of the 96-h forecasts of geopotential height at 500 hPa from the ECMWF by using (a) the superensemble

with (O-SUP) and without (SUP) optimized training and (b) the bias-removed ensemble mean with (O-BREM) and

without (BREM) optimized training at each grid over the area 10◦–60◦N, 0◦–360◦. The ordinate denotes the RMSE and

the abscissa denotes forecast date.



46 ACTA METEOROLOGICA SINICA VOL.26

To sum up, the 24–72-h forecast experiments of
500-hPa geopotential height in the Northern Hemi-
sphere show that the improvement of SUP over the
individual models was more obvious, and the BREM
forecast skill was somehow inferior to that of SUP.
But for longer than 96-h forecast lead time, both SUP
and BREM forecast schemes might not well reduce the
overall errors in the region. However, after the length
of the running training period was optimized at each
grid point, the forecast errors declined to some extent.

Zhi et al. (2009b) indicated that for the 24–168-h
superensemble forecasts of the surface temperature in
the Northern Hemisphere, the optimal length of the
training period is about two months. Since the fore-
cast skill becomes lower when taking a longer training
period in the BREM forecast, for shorter forecast lead
time of 24–72 h, the most appropriate training period

is about half month. For 96–168-h forecasts, it is suit-
able to select about one month as the optimal length
of the training period. This shows that the selection
of the length of the training period is essential for the
SUP and BREM forecasts. Only when appropriate
length is selected, can the forecast error be reduced to
a minimum. Too long or too short training periods
may influence the forecast skill. For forecasts at dif-
ferent lead time, SUP and BREM forecasts also need
different optimal training periods.

In order to obtain the best forecast skill, the opti-
mal length of the training period should be determined
for the SUP forecast. As the models involved in the
multimodel ensembles contribute differently for differ-
ent forecast regions, the length of the training period
for each grid point should be tuned. As shown in Fig.
3, for most areas in the Northern Hemisphere, the

Fig. 3. Distributions of the optimal length (days) of the running training period for the 144-h forecasts of 500-hPa

geopotential height using the (a) BREM and (b) SUP techniques over the Northern Hemisphere.
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optimal length of the BREM training period is less
than that of the SUP training period. Generally
speaking, for both of the BREM and SUP schemes, the
length of the training period changes significantly from
one area to the other, which may be caused by dif-
ferent forecasting system errors associated with each
model involved in the ensemble in different geograph-
ical regions. At present, due to lack of data, it is
difficult to analyze the features of the changes in the
optimal length of the training period for different sea-
sons within each region.

3.3 Further comparison between SUP and

BREM

Figure 4 shows the forecast RMSEs of the 500-hPa
geopotential height, zonal wind, meridional wind, and
temperature of the best single model, the EMN, the
optimal BREM, and the optimal SUP averaged in the
forecast period in the Northern Hemisphere excluding
high latitudes (10◦–60◦N, 0◦–360◦). As shown in Fig.
4a, the RMSEs of the 24–168-h best single model fore-
casts of the 500-hPa geopotential height range from
10.4 to 37.7 gpm. The RMSE of SUP has always been
the lowest for 24–120-h forecasts. Overall, the average
error of the 24–120-h SUP forecasts is about 15 gpm,
which reduces the RMSE by 16% compared with the

best single model forecasts. For 24–120-h forecasts,
the BREM forecast has a lower skill than the SUP
forecast.

However, when the forecast lead time is extended
to 144–168 h, BREM has an approximately equal fore-
cast skill as SUP. As shown in Figs. 4b–4d, similar
conclusions are found for other variables at 500 hPa.
For 144–168-h forecasts of 500-hPa temperature, the
RMSEs of the SUP and BREM forecasts can still be
reduced respectively by 8% and 10% compared with
the best single model forecasts (Fig. 4d).

Figure 4 shows that SUP can effectively improve
the forecast skill of all the studied variables at 500
hPa. For the 24–120-h forecasts, SUP is superior to
BREM, EMN, as well as the best single model forecast.
Especially, the 24–120-h forecast error of the 500-hPa
geopotential height from SUP is 16% less than that of
the best single model forecast, while that of BREM er-
ror is about 8%. For the 144–168-h forecasts, the SUP
and BREM forecast skills are approximately equal.

3.4 Effect of the model quality on SUP and

BREM

Krishnamurti et al. (2003) indicated that the best
model involved in the superensemble contributes to

Fig. 4. RMSEs of (a) 500-hPa geopotential height, (b) zonal wind, (c) meridional wind, and (d) temperature forecasts
for the best individual model, the EMN, the optimal BREM, as well as the optimal SUP averaged for the forecast period
17–31 August 2007 in the area 10◦–60◦N, 0◦–360◦.
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approximately 1%–2% improvement for the su-
perensemble forecast of the 500-hPa geopotential
height, while the overall improvement of the su-
perensemble over the best model is about 10%. This
improvement in the superensemble is a result of the
selective weighting of the available models during the
training period. That is to say, the weight distribution
of all the models contributes a lot to the improvement
of the superensemble forecasting techniques. Then
how will a poor model affect the SUP and BREM?
From a detailed analysis of forecast errors in Fig. 1,
we have found that the UKMO model has the largest
errors among the four models participating in the en-
semble. Now, two kinds of forecast schemes are de-
signed to investigate the effect of model quality on the
multimodel ensemble forecasting.

Scheme I: multimodel forecast including the
UKMO forecast data.

Scheme II: removing the UKMO forecast data
from the multimodel ensemble.

The training period and the forecast period are
the same as the above for the two schemes. Figure
5 gives the RMSEs of the SUP and BREM using the
original results of the multimodel data (4-SUP and 4-
BREM), as well as SUP and BREM after removal of

the UKMO data (3-SUP and 3-BREM).
As shown in Fig. 5, the 3-BREM (without the

UKMO model) forecast error is less than that of the 4-
BREM (with UKMO). Take 24- and 168-h forecasts of
500-hPa geopotential height as examples, RMSEs have
been reduced from 10.4 and 37.7 gpm to 7.8 and 34.6
gpm, respectively. The results show that the BREM
forecast is sensitive to the performance of each model
involved in the ensemble. The better the model in-
volved is, the higher skill the multimodel ensemble
forecast will have. Therefore, it is necessary to ex-
amine the performance of each model involved before
conducting the BREM forecast.

However, as shown in Fig. 5, the skill of the 24–
168-h SUP forecast of each variable differs from that
of the BREM forecast. The forecast errors of 3-SUP
without the UKMO model and 4-SUP including the
UKMO model are approximately equal, i.e., the SUP
forecast is not very sensitive to the poor model in-
volved. The reason for this is that the SUP method
itself requires the models participating in the ensem-
ble to have certain spread. For the UKMO model,
although the forecast error of this model is large, it is
still within the spread. In addition, the poor model
will be assigned a small weight in the SUP forecast.

Fig. 5. RMSEs of (a) geopotential height, (b) zonal wind, (c) meridional wind, and (d) temperature at 500 hPa from
the optimal 4-SUP and 4-BREM and the optimal 3-SUP and 3-BREM with the worst model data excluded from the
multimodel suite. The results were averaged for the period 17–31 August 2007 over the area 10◦–60◦N, 0◦–360◦ for
24–168-h forecasts.
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Fig. 6. Geographical distributions of the reduction percentage (%) of the mean RMSEs of 500-hPa geopotential height

(left panels) and temperature (right panels) over the best model by the EMN (top panels), the optimal BREM (middle

panels), and the optimal SUP (bottom panels) for 144-h forecasts from 17 to 31 August 2007 in the Northern Hemisphere

(10◦–87.5◦N, 0◦–360◦).
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Thus, the inferior model has a small impact on the
SUP results.

3.5 Geographical distribution of the improve-

ment by SUP and BREM over the best

model

A detailed examination in Fig. 6 shows that the
144-h forecast skills of the 500-hPa geopotential height
and temperature are improved significantly by using
the SUP and BREM forecast techniques in most ar-
eas, especially in the tropics. In the extratropics, the
SUP and BREM forecast skills have been improved
by more than 20% in the areas of Ural Mountains,
Lake Baikal, and the Sea of Okhotsk compared with
that of the best single model forecast. It is well known
that Eurasian blockings frequently occur over the Ural
Mountains, Lake Baikal, and the Sea of Okhotsk (Zhi
and Shi, 2006; Shi and Zhi, 2007), which has a sig-
nificant impact on the persistent anomalous weathers
in the upstream and downstream regions. The above
analysis indicates that the multimodel ensemble fore-
casts may significantly improve the forecast skills of
the variables at 500 hPa in mid–high-latitudes. There-
fore, it is helpful for improving the forecast of some
high-impact mid-high latitude weather systems by us-
ing the multimodel ensemble forecast techniques.

4. Conclusions

The superensemble forecasting takes full advan-
tage of multimodel forecast products to improve the
forecast skill. Through series of comparative analysis,
the following conclusions are obtained.

(1) Comparative analysis of linear and nonlinear
multimodel ensemble forecasts shows that for 24–120-
h forecasts, the NNSUP forecast performs better than
LRSUP and BREM forecasts. However, for 144–168-h
forecasts, the forecast errors of BREM, LRSUP, and
NNSUP are approximately equal.

(2) Both LRSUP (or SUP) and BREM forecasts
of 500-hPa geopotential height have different optimal
lengths of training period at each grid point. The
optimal length of the training period for SUP is more
than one and a half months in most areas, while it is
less than one month for BREM.

(3) The SUP forecasts using the optimal length of
the training period at each grid point have roughly a
16% improvement in the RMSEs of the 24–120-h fore-
casts of 500-hPa geopotential height, temperature,
zonal wind, and meridional wind, while the improve-
ment of the BREM is only 8%. But for 144–168-h
forecasts, the forecast skill of the SUP is comparable
to that of the BREM.

(4) For 24–168-h forecasts of the 500-hPa geopo-
tential height, temperature, and winds, the BREM
forecast without the UKMO model is more skillful
than that with the UKMO model, while the SUP
forecast error without the UKMO model is equivalent
to that with the UKMO model. Hence, it is necessary
to verify each model involved before conducting the
BREM forecasting.
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