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ABSTRACT

To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors,
three ensemble prediction systems using both initial perturbation methods but with different ensemble
member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center,
China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast
skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most
important attributes of ensemble forecast systems. The results indicate that the ensemble transform tech-
nique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient
(ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and
spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its
decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among
ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study
may serve as a reference for configuration of the best ensemble prediction system to be used in operation.
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1. Introduction

After the fundamental work of Lorenz (1963), the
chaotic attribute of weather system is well-recognized
by meteorologists, along with the realization of fur-
ther limitation in model errors linked to the approxi-
mate simulation of atmospheric processes. These two
sources of uncertainty limit the skill of single, deter-
ministic forecasts in an unpredictable way, and thus
ensemble prediction is put forward as a feasible way
to complement a single, deterministic forecast with an
estimate of the probability density function of forecast
states. Ensemble of numerical forecasts from slightly
perturbed initial conditions can have a beneficial im-
pact on the skill of the forecast (Leith, 1974). To this
end, ensemble forecasts start from a set of different
states sampled from a probability density function.
However, how to better generate these initial pertur-

bations is still a research issue. The initial pertur-
bation techniques applied at different forecasting cen-
ters are: singular vectors (SVs) at the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
(Buizza and Palmer, 1995), breeding vectors (BVs) at
the National Meteorological Center, China Meteoro-
logical Administration (NMC/CMA), ensemble trans-
form vectors at the US National Centers for Envi-
ronmental Prediction (NCEP) (Wei et al., 2008), and
the perturbed observation (PO) approach at the Me-
teorological Service of Canada (MSC) (Buizza et al.,
2005). The ensemble transform initial perturbation
technique was developed from the traditional breeding
method, and it represents a nonlinear extension of the
Lyapunov vectors. The ensemble transform technique
is more consistent with the data assimilation systems
(Wei et al., 2008). Hence, it is regarded as a promising
method in operational forecast. In this study, based
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on the spectral model T213 at the NMC/CMA, com-
parisons between two different initial perturbation
methods (i.e., the breeding vector method and the
ensemble transform method) are conducted to inves-
tigate the skill of three ensemble prediction systems.
The result may serve as a reference for global ensemble
prediction system (GEPS) upgrading at the national
level forecast centers.

This paper is organized as follows. In Section 2,
we briefly review the breeding vector and ensemble
transform techniques. Section 3 describes verification
results and analysis. The summary and discussion are
given in the last section.

2. Initial perturbation methodologies and ex-

periment design

The model used is the NMC/CMA T213/L31, a
global model that adopts the semi-Lagrangian time-
stepping scheme. The model calculates meteorologi-
cal fields on three-dimensional grids with 31 vertical
levels (thereby L31). The output for the horizontal
fields is compressed in spherical harmonics with tri-
angular truncation and a maximum resolution of 213
wavelengths on a great circle (thereby T213).

The initial perturbation methods using breeding
vectors and ensemble transform vectors are used to
sample and sort out the fastest-growing components
of initial errors. The breeding approach attempts to
simulate the development of growing errors in the anal-
ysis cycle (Toth and Kalnay, 1997), and the ensemble
transform technique (Bishop and Toth, 1999; Wei et
al., 2008) is an extension of breeding and thus has
some similarities in breeding the perturbations in the
dynamical cycles.

2.1 The breeding vector approach

The breeding vector (BV) approach simulates the
development of growing errors in the analysis cycle.
This procedure consists of the following steps: (a) add
a small perturbation to the atmospheric analysis (ini-
tial state) at any given time t0 (the small perturbation
is obtained by using the difference between the fore-
casts valid at time t0 but initiated at a short random
time period prior to t0); (b) integrate the model from

both the perturbed and unperturbed initial conditions
for a short period (from t0 to t1); (c) subtract one fore-
cast from another; (d) scale down the difference field
so that it has the same norm (i.e., amplitude of root
mean square of rotational kinetic energy) as the ini-
tial perturbation; and (e) add this perturbation to the
analysis at time t1. The steps (b)–(e) are repeated for-
ward in time. Note that once the initial perturbation is
introduced in step (a), the development of the pertur-
bation field is dynamically determined by the evolving
atmospheric flow (Toth and Kalnay, 1993, 1997)

za = zf × r, (1)

where zf and za are ensemble forecast and analysis
perturbations, respectively.

r = mask(λ,φ,t)/k(λ,φ,t), (2)

where r is the regional rescaling factor at latitude λ,
longitude φ, and time t; mask denotes the monthly un-
certainty and is estimated by comparing the T213 op-
erational analysis and the NCEP operational analysis;
and k is derived from the every day forecast difference
between a pair of ensemble members for all variables
at all levels.

The growing component of the regionally vary-
ing uncertainty in the analysis is measured as the dif-
ference between parallel analysis cycles. The average
difference field is then used as a mask in the regular
rescaling process of the bred vectors to ensure that the
initial ensemble perturbations have a spatial distribu-
tion and amplitudes similar to those of the analysis
errors. Each bred perturbation is either added to or
subtracted from the control analysis.

2.2 The ensemble transform vector approach

One of the initial perturbation methods, the en-
semble transform (ET) vectors, was formulated in
Bishop and Toth (1999) primarily for target observa-
tion studies. In this paper, we adopt this technique
for ensemble forecasting. We follow Wei et al. (2008)
in the perturbation matrix formulation. Let

Zf =
1√

k − 1
[zf

1 ,zf
2 , · · · ,zf

k ],

Za =
1√

k − 1
[za

1 ,za
2 , · · · ,za

k], (3)
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where the n-dimensional state vectors zf
i = xf

i − xf

and za
i = xa

i −xa(i = 1, 2, · · · , k) are k ensemble fore-
casts and analysis perturbations, respectively. In our
experiments, xf is the mean of k ensemble forecasts,
and xa is the analysis from the independent T213 op-
erational data assimilation system. Unless stated oth-
erwise, the lower and upper case bold letters indicate
vectors and matrices, respectively. The n× n forecast
and analysis covariance matrices are formed, respec-
tively, as

P f = Zf (Zf )T, and P a = Za(Za)T, (4)

where T indicates the matrix transpose. For a given
set of forecast perturbations Zf at time t, the anal-
ysis perturbations Za = (Zf )T r. Suppose we have
obtained the analysis covariance matrix from the
operational data assimilation system, then P a =
(ZfT r)(ZfT r)T. The ET solution is Za = ZfT r,
where T r = CΓ−1/2, C contains column orthonor-
mal eigenvectors (ci) of (Zf )T(P a)−1Zf , and Γ is
a diagonal matrix containing the associated eigen-
values (λi), that is, C = [c1, c2, · · · , ck] and Γ =
diag(λ1, λ2, · · · , λk). Although the forecast perturba-
tions are, by definition, centered about the ensemble

mean, i.e.,
k∑

i=1

zf
i = 0.0, the analysis perturbations

produced by the ET defined above are not centered

around the analysis (
k∑

i=1

za
i �= 0.0). A simple transfor-

mation that will preserve P a and center the analysis
perturbations about the analysis is the simplex trans-
formation. Similar to the ensemble transform Kalman
filter (ETKF) experiments, CT is one of the solutions
of this transformation. Hence, Za = ZfT rC

T will be
used as our initial analysis perturbations for the next

cycle forecasts.

2.3 Comparison between the BV and ET meth-

ods

Figure 1 shows the basic characters of the two ini-
tial perturbation techniques. For the BV method, P 1
and N1 are the pairs of positive and negative indepen-
dent vectors, the amplitudes of which are controlled
by a simple scaling coefficient while the directions of
which are not changed in this process. As to the ET
method, P 1, P 2, P 3, and P 4 are orthogonal vectors.
To centralize all perturbed vectors (sum of all vectors
should be equal to zero), like the BV method, per-
turbation amplitudes are scaled down by applying the
mask derived in Eq. (2), and the directions of the vec-
tors will be tuned by the ensemble transform process.

2.4 Numerical experiment design

2.4.1 Control run
The control run is the natural integration of the

T213 model from 10 to 23 November 2007 with a
lead-time of 10 days. The NMC operational analysis
is used as observations for verification. The analysis
field is obtained from the T213 analysis and assimi-
lation system with 3DVAR and a multivariate spec-
tral statistical interpolation (SSI) analysis scheme in
which observations including the ATOVS (Advanced
TIROS Operational Vertical Sounder; TIROS stands
for Television and Infrared Observation Satellite) data
are assimilated. The analysis is used as “true state”
of atmosphere for verification in this paper.
2.4.2 14-member GEPS with initial perturbations gen-

erated by the BV method (BV14)
The model and model integration period as well

as the analysis data are the same as the control run.

Fig. 1. Schematic diagrams of the breeding vector (a) and ensemble transform (b) methods.
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We make use of the BV method to set up the GEPS,
in which 14 members are used in the breeding scheme.
To create a stable and fully developed ensemble sys-
tem, the initial time for model integration is set at
0000 UTC 5 November 2007 so that it has a 5-day
“spin-up” period. The initial perturbation is obtained
by using the difference between the forecasts integrat-
ing from different initial time to a unified ending time.
The T213 model runs at a cycle of 4 times a day, and
each time it integrates at a 6-h lead time. After a
5-day ensemble cycling, the perturbations would have
fully developed and thereafter, we make parallel com-
parisons between different GEPSs for the period 10–23
November 2007 as aforementioned.
2.4.3 14-member GEPS with initial perturbations gen-

erated by the ET technique (ET14)
All of the work flow is similar to that described

in Section 2.4.2, except that we make use of the ET
method to set up the GEPS.
2.4.4 24-member GEPS with initial perturbations gen-

erated by the ET technique (ET24)
Similar to the above, we make use of the ET

method to set up the GEPS, but 24 members are used
in the scheme.

To test the performance of different initial per-
turbation techniques under the same conditions, we
run parallel tests with the BV based GEPS and the
ET based GEPS, respectively. There are 14 ensemble

members for both of them. Furthermore, to test the
effect of ensemble size, we increase the member size of
the ET based GEPS to 24. All the GEPSs run with a
period of “spin up” to achieve adequate perturbation
growth with different methods.

3. Results

To figure out the similarities and differences be-
tween the two methods, a rough comparison of per-
turbation evolution of 500-hPa geopotential height is
conducted. Figures 2 and 3 show the ensemble mean
and root mean square error (RMSE) of the 500-hPa
geopotential height at the initial time of verification
(0000 UTC 10 November 2007) and 10 days later (0000
UTC 20 November 2007). To compare equally popu-
lated ensembles, only 14 members for each method
(BV14 and ET14) are used. Each ensemble is verified
against the same analysis at the corresponding time.

At the initial verification time, the ensemble mean
and RMSE of 500-hPa geopotential height by use of
the BV and ET methods are almost the same, al-
though each ensemble system has passed the 5-day
spin-up with its own cycles (Fig. 2). Figure 3 shows
the 10-day forecast valid at 0000 UTC 20 November
2007. It is shown that even after 10-day integrations,
the forecast errors for the two methods are still very
similar in both magnitude and error distributions,

Fig. 2. Ensemble mean (contours; dagpm) and RMSE (shadings) of 500-hPa geopotential height at 0000 UTC 10

November 2007 by use of the BV (a) and the ET (b) methods. Contour interval is 4 dagpm and shading level interval

is 0.5 dagpm.



56 ACTA METEOROLOGICA SINICA VOL.26

Fig. 3. As in Fig. 2, but at 0000 UTC 20 November 2007.

which proves that the perturbation structure for the
ET and BV methods is very similar. This similarity
in perturbation structure may partly result from the
similarities of the two methods in creating the ensem-
ble initial conditions, and it may also be due to the
“inadequacy” of cycles at the verification time.

Different measures emphasizing different aspects
of forecast performance can be used to assess the sta-
tistical reliability, resolution, and discrimination of a
forecast system. In this study, the performance of
the three EPSs will be compared using a comprehen-
sive set of standard ensemble and probabilistic fore-
cast verification methods, including calculations of
the anomaly correlation coefficient (ACC), RMSE, the
Brier skill score, the outlier statistics (a measure of re-
liability), and the area under the relative operating
characteristics (ROCs; a measure of discrimination).
Refer to Candille and Talgrand (2005), Atger (1999),
Toth et al. (2003, 2005) for a detailed description of
these scores.

3.1 Forecast skill for ensemble mean

The RMSE and ACC are influenced by both sys-
tematic errors (e.g., a low bias in ensemble spread,
degrading reliability) and random error variance (re-
ducing a forecast system’s ability to distinguish among
different events, leading to reduced resolution). There-
fore, these two scores offer good measures for the over-
all forecast performance.

ACC is used to quantify the spatial correlation
between forecast and observed deviations from clima-
tology. It often serves as a basic score to evaluate the
performance of a numerical weather prediction system.
Normally, ACC = 0.6 (subjective) is defined as a basic
synoptic-scale forecast skill.

For ACC, the ensemble result is also compared
with that of the control forecast. It is worth noting
that all GEPSs are more skillful than the control run in
terms of ACC (see Fig. 4). The gain in predictability
from running an ensemble (instead of a single control
forecast) is about 0.5 day in view of the synoptic-scale
forecast skill (ACC = 0.6), and the benefit of ensemble

Fig. 4. Forecast skill (pattern ACC) for the control run

(diamond) and the ensemble mean of the GEPS (rectangle

for ET14, triangle for ET24, and open circle for BV14).

Values are for 500-hPa geopotential height over the North-

ern Hemisphere, and if not specifically mentioned, all of

the calculations in this article refer to this variable.
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versus control run becomes more significant as the lead
time increases. These gains are due to the nonlin-
ear filtering effect that the ensemble averaging offers
in terms of error growth reduction (Toth and Kalnay,
1997). Comparison among results of the three ensem-
ble prediction tests show that although all the ensem-
ble predictions gain some skills in general, the skills
of the two ET based ensembles achieve a slight higher
score than the BV method for less than 7-day forecast
lead time. However, for longer lead time, ET14 gets
worse compared with BV14, and ET24 gains a highest
score throughout all the 10-day forecasts.

3.2 Ensemble mean error and spread

For a perfect ensemble prediction system, the
spread of the system is equal to the RMSE of the en-
semble mean. Figure 5 compares the RMSE of the
ensemble mean forecast and the mean spread of corre-
sponding test ensemble systems as a function of lead
time. At the beginning of the test, the ensemble spread
is slightly larger than the ensemble mean error, indi-
cating a larger than desired initial spread. However,
the error growth becomes larger than the ensemble
spread, which indicates that all test ensemble systems
underestimate ensemble spread. This is likely because
not all possible sources of model related uncertainty
are accounted for. Regarding the relationship between
the control run (model integration with the best ini-
tial conditions or control analysis) and ensemble fore-
casts, it is obvious that all ensemble systems obtain
smaller RMSE of the ensemble mean than that of the
control run, suggesting the advantage of the ensemble
system. It is seen that the BV based ensemble has
the least spread at all forecast lead time (BV14-SP),
and with the largest error growth among all ensembles
except for the 9- and 10-day forecast lead time (BV14-
RM). In comparison, the 14-member ET based ensem-
ble shows a larger spread growth rate and smaller error
growth than the BV method. Unlike the BV pertur-
bation technique, the perturbation in each member of
the ET based ensemble is almost orthogonal with oth-
ers. The more ensemble members we have, the more
orthogonality we could achieve within an ensemble sys-
tem, which may explain why the 24-member ET based
ensemble system (ET24-SP) possesses the best spread

Fig. 5. Evolution of RMSE of the control run and the

GEPS mean error (“RM”) and spread (“SP”) as a function

of lead time for different initialization methods.

among all test systems. Furthermore, for all three en-
semble systems, the smaller error growth is almost re-
lated to larger ensemble spread, indicating the consis-
tent behavior of the ensembles.

3.3 The continuous ranked probability score

To evaluate the global skill of an EPS, we check
the CRPS score of the EPS (Candille et al., 2007). The
CRPS measures the distance between the predicted
and observed cumulative density functions (CDFs) of
scalar variables.

CRPS =
∫ ∞

−∞
[Pfcst(x) − Pobs(x)]2dx, (5)

where Pobs(x) and Pfcst(x) are the observed and pre-
dicted CDFs, respectively. The CRPS is the general-
ization of the Brier score over all possible thresholds of
the variable under consideration. The CRPS is nega-
tively oriented, reaching its minimum value of zero for
a perfect deterministic system. A higher value of the
CRPS indicates a lower skill of the EPS. It has the ad-
vantage of being sensitive to the whole range of values
of the parameter of interest, and does not depend on
predefined classes at the same time.

Figure 6a shows the forecast skill of all the three
ensembles at 10-day lead time for 500-hPa geopoten-
tial height. It is seen that the difference gets larger
and larger as forecast time increases. Overall, the
24-member ET based ensemble system has the least
CRPS score compared with the other two, and the
score of the BV method is the highest within the fore-
cast range, so it achieves the least forecast skill.

Figure 6b shows the time evolution of the CRPS
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Fig. 6. CRPS score for different GEPS experiments for 500-hPa geopotential height (a) and 850-hPa

temperature (b).

for temperature at 850 hPa (T850). Like the 500-
hPa geopotential height (H500), the forecast skill from
the best to the worst is listed as ET24>ET14>BV14.
However, it is obvious that the difference between the
two ET based ensembles is small, indicating that in-
creasing of the ensemble size does not guarantee a sig-
nificant gain in forecast skill by means of CRPS score.
Nevertheless, there is a marked difference between the
ET and the BV based ensemble forecast systems, im-
plying that selection of the initial perturbation tech-
niques is important for the prediction results of tem-
perature and geopotential height.

The CRPS provides an all-inclusive measure of
the skill of an EPS, and can be decomposed into re-
liability and resolution in order to evaluate the two
main characteristics of a probabilistic prediction sys-
tem (Toth et al., 2003). Reliability and resolution are
two general attributes of forecast systems, and they
determine the usefulness of a probabilistic forecast sys-
tem. Hersbach (2000) and Candille et al. (2007) have
proposed a reliability/resolution decomposition of the
CRPS in the discretized case:

CRPS = Reli + Reso, (6)

Reli =
N∑

i=0

gi(oi − pi)2, (7)

Reso =
N∑

i=0

gioi(1 − oi), (8)

where N is the ensemble size, gi is the average width
of the bin i (Euclidean distance between consecutive
ensemble members xi and xi+1 for 0 < i < N , and Eu-

clidean distance between the observation and the out-
liers for i = 0 or i = N), oi can be seen as the average
frequency when the observation is less than the middle
of the bin i, and pi is the fraction i/N . Reli measures
the reliability of the ensemble system and measures the
difference between the resolution of the EPS and the
uncertainty associated with the variable considered. It
is noted that the uncertainty does not depend on the
prediction system. Reliability indicates the property
of statistical consistency between predicted probabili-
ties and observed frequencies of occurrence of the event
under consideration; while resolution shows the abil-
ity of a forecast system to discern sub-sample forecast
periods with different relative frequencies of the event.
Like the CRPS itself, the two components of the de-
composition are negatively oriented (Hersbach, 2000),
that is, the smaller those scores are, the better an EPS
is. Reli is equal to 0 if the system is perfectly reliable
and a significant positive value of Reli quantifies the
lack of reliability of the system.

The CRPS shows that the overall forecast skill
of the ET based ensemble is higher than the BV en-
semble. However, as shown in Fig. 7a, the resolu-
tions of all the three ensembles are almost the same.
In other words, the skill propriety of the ET method
comes from the attribute of reliability. This indicates
that the ET method is superior to the BV in issu-
ing the observed climatological distribution or relia-
bility. In addition, the ensemble size contributes to
reliability since the score of the 24-member ET ensem-
ble is much smaller than that of the 14-member ET
ensemble (Fig. 7b).
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Fig. 7. Decomposition of the CRPS for different GEPS experiments for geopotential height at 500 hPa. (a) Resolution

and (b) reliability.

3.4 The reduced centered random variable

As an important attribute of an EPS, the relia-
bility property of different ensembles will be further
explored. Let us consider a scalar variable x and an
associated EPS that produces an ensemble of values
from which the predicted PDF can be obtained.

The EPS is such a reliable mean that any ver-
ifying observation will be indistinguishable from the
values predicted by the ensemble system. Considering
observation x0, the mean m, the observation error σ0,
and the standard deviation σ of corresponding ensem-
ble of predictions, a new method to verify attributes of
EPS is the reduced centered random variable (RCRV)
(Candille et al., 2007), which is expressed as:

y =
x0 − m

√
σ2

0 + σ2
. (9)

The average of y is defined as

b = [y]. (10)

The variable b is computed over all grids of the
ensemble system and represents the weighted bias be-
tween the ensemble and the observation. The standard
deviation of y,

d =

√
M

M − 1
E[(y − b)2], (11)

where M is the sample size on which the statistics are
computed, and d is a measure of systematic over- or
under-dispersion of the ensemble.

The first two moments of b and d provide a simple
diagnostic of the indistinguishability between the val-
ues predicted by the ensemble and the observation. A

perfectly reliable system has no bias (i.e., b = 0) and
a dispersion equal to 1 (d = 1). A significant nega-
tive (positive) value of b indicates a negative (positive)
bias. A value of d significantly greater (smaller) than
1 characterizes the under-dispersion (over-dispersion)
of the system.

To further demonstrate the improvement of the
ET ensemble prediction over the BV ensemble pre-
diction, we show in Fig. 8 the bias and the disper-
sion derived from the RCRV. The significant reliabil-
ity gain is mainly due to the dispersion improvement,
which is significant for all forecast ranges (up to 0.2–
0.3 K); while the bias difference is comparatively less,
especially within the forecast range of 4-day lead time,
and the normal difference between different ensembles
is less than 0.05 K. Note that all ensembles are under
dispersive (d ∼ [1.2, 1.9]) with positive bias (b ∼ [0.2,
0.6]). The dispersion of the 24-member ET ensemble
is better than the 14-member ET ensemble, and the
latter in turn is better than the BV ensemble. For the
bias, the 24-member ET ensemble is the best for all
forecast ranges, while the 14-member ET ensemble is
better within the forecast range of days 2–7, but worse
for days 8–10, compared with the breeding based en-
semble prediction.

4. Conclusions and discussion

In this paper, we have configured three global en-
semble prediction systems (GEPSs). The GEPSs have
different numbers of ensemble members and apply the
breeding vector (BV) method or the ensemble trans-
form (ET) method to generate initial perturbations.
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Fig. 8. Bias (a) and dispersion (b) between different GEPSs.

The forecast model used is the spectral model of
T213/L31, which contains the 3DVAR assimilation
module and could direct assimilate large amount of
observations including the ATOVS data. To compare
the performance of different ensemble systems, a se-
ries of ensemble verification methods are introduced.
We mainly focus on the most important attributes
of ensemble forecast systems such as forecast skill for
ensemble mean, resolution, and reliability. The major
conclusions are obtained as follows:

1) The forecast skill measured by ACC of the en-
semble mean of 500-hPa geopotential height indicates
that the predictability of the BV and ET based en-
sembles is quite similar, and all of them have obvious
advantages over the single deterministic forecast.

2) The RMSE of the BV method is slight higher
than the ET method, while the spread of the latter is
a little larger than the former. Further, the increase
rate of the ET is faster than the BV, indicating that
the ET ensemble prediction exhibits a better skill on
description of uncertainty.

3) Detailed evaluation of resolution and reliability
(CRPS and RCRV) indicates that the superior skill
of the ET results from reliability. Evaluation of both
geopotential height and temperature fields shows sim-
ilar results.

4) The size of the ensemble (number of ensemble
members) in the ET ensemble prediction system not
only extends predictability of ensemble mean com-
pared with the deterministic forecast, but also in-
creases the uncertainty description skill from different
sides.

In short, comparisons between two different ini-

tial perturbation methods, i.e., the BV method and
the ET method, show that the ET technique has a
somewhat higher skill over the BV method. This is
likely because that the former adopts the advantage
of the breeding method in representing the nonlinear
extension of the Lyapunov vectors; meanwhile, there
is a comparatively better orthogonality among ensem-
ble members and the orthogonality will increase as
the number of ensemble members increases. This ex-
plains why the 24-member ensemble is superior to the
14-member ensemble for all evaluation results. Fur-
thermore, the ensemble transform technique is more
consistent with the data assimilation system; hence,
it is a promising choice in ensemble prediction system
construction for operation at the NMC of China.
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