Vol. 16 No. 2 ACTA METEOROLOGICA SINICA 2002

AN IMPROVED SEMI-IMPLICIT TIME DIFFERENCE SCHEME
OF SPECTRAL MODEL AND NUMERICAL APPLICATIONS’

ZHANG Chaolin (GEEAM) ", ZHENG Qinglin FBFEM) and SONG Qingl: (REFWH
Chinese Academy of Meteorological Sciences, Beijing 100081

Received March 3. 2001; revised September 6. 2001

ABSTRACT

In fact. the popular semi-implicit time difference scheme of spectral model still includes some
important linear terms using time explicit difference scheme. and the major terms are directly
related to fast internal- and external-gravity waves in the atmospheric forecasting equation.
Additionally. due to using time difference on two terms at different time, the popular scheme
artificially introduces unbalance between pressure-gradient force and Coriolis force terms while
numerically computing their small difference between large quantities. According to the
computational stability analysis conducted to the linear term time difference scheme in simple
harmonic motion equation, one improved semi-implicit time difference scheme is also designed in
our study. By adopting a kind of revised time-explicit-difference scheme to these linear terms rhat
still included in speetral model governing equations, the defect of spectral model which only partly
using semi-implicit integrating scheme can be overcome effectively. Moreover. besides all spectral
coefficients of prognostic equations. especially of Helmholtz divergence equation. can be worked
out without any numerical iteration. the time-step (computation stability) can also be enlarged

(enhanced) by properly introducing an adjustable coefficient.
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computational stability

1. INTRODUCTION

Spectral models are developed so rapidly that they become the powerful tools widely
employed in the following fields of weather. «climatic variation and operational
meteorological services. one major reason just results from successfully adopting semi-
implicit time difference scheme.

Compared with the time implicit scheme. the semi-implicit time difference scheme not
only obviously enlarges time-integration step, but also greatly facilitates the computation
of all spectral coefficients in prognostic equations without any numerical iteration,
especially in Helmholtz divergence equation. In other words. utilizing semi-implicit time
difference scheme in a spectral model is very convenient and only needs a little of additional

numerical computation costing.

+ The project is supported by the Beijing New Star Program of Science and Technology of China
during 20012004 under Grant No. H013610330119.

«» Corresponding author address: Dr. ZHANG Chaolin, Beijing Urban Meteorological Research
Institute, Beijing Meteorological Bureau, No. 44 Zizhuyuan Road. Haidian District. Beijing 100089, P.R.
China. Phone: (86)-010-68414488-6276. E-mail:c_lzhang@yahoo. com.



No. 2 ZHANG Chaolin. ZHENG Qunglin and SONG Qingli 181

Based on the principle dividing atmospheric evolutions into both faster and slower
processes. Zeng (1961) firstly proposed semi-implicit time difference scheme. and pointed
out that the time step of numerical integration can be easily enlarged with a method
employing implicit- and explicit-time difference on linear terms (closely related to the
augmentation of high-frequency gravity waves) and nonlinear terms (related to those
slower atmospheric evolution processes. for example. advection terms). respectively.
However. because the above paper is formally published in Russian. the semi-implicit time
difference scheme does not attract scientists’ attention widely until similar schemes are
proposed by Robert (1968a: 1968b). After developed by many meteorologists. the semi-
implicit time difference scheme now becomes extensively used difference methods in
numerical weather prediction. Studies on successfully applied semi-implicit time difference
scheme in spectral models can be traced back to the early 1970s (Rebert 1970; Rebert et
al. 1972). In those studies the implicit time difference scheme is successfully designed to
enlarge the time-integrated step for multi-level baroclinic spectral model of the atmosphere
while holding the precision and stability of numerical computation. Further development is
carried out by Bourke (1972: 1974). In his papers. the semi-implicit time difference
scheme is designed by linearizing those terms related to gravity waves with respect to
reference temperatures under the framework of popular scheme of vertical finite difference
and variables location. However. from the above scheme proposed by Bourke. it obviously
can be seen that the implicit time difference method is not used for all linear terms related
to high-frequency gravity waves. and the major purpose should be keeping away from
numerical iteration with time integration of spectral coefficients of prognostic equations.
Following above studies. many researches have been dealt with the relationship between
reference temperature profile and computational stability of semi-implicit time difference
scheme of spectral model. For instance, Chen and Ye (1993) investigated the semi-
implicit time integration scheme for a reference atmosphere spectral model. especially on
computational instability emerged with the excessive bias between reference and real
temperature profiles. Because absolute vorticity and divergence are generally used as basic
prognostic variables of perfect numerical prognostic equations. the popular semi-implicit
time difference schemes of spectral model used today have been changed in form much
more than those original schemes. but basic principle of the popular scheme. indeed. is
consistent with what proposed by Bourke (1974). In fact, the popular scheme still
includes some important linear terms. which are differenced by time explicit scheme and
directly related to atmospheric divergence (1. e.. high-frequency gravity waves of
atmosphere). This is because that in the interaction terms between absolute vorticity and
motion only the interaction between relative vorticity and motion is truly nonlinear. the
other part. i.e. the interaction between geostrophic vorticity and motion. is linear and
conceals fast wave components related to high-frequency gravity waves of atmosphere.
Additionally. due to differenced pressure-gradient force and Coriolis force terms at
different time. the popular semi-implicit time difference scheme artificially introduced
unbalance while numerically computing their small difference between large quantities.
Namely. the semi-implicit time difference just partly applied for general time difference
scheme of spectral model. Zheng (1989) has designed one full semi-implicit time difference
scheme for a 7-level global spectral model. in which implicit- and explicit-time differences
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are employed to linear and nonlinear terms, separately. Used this scheme. one can
effectively numerically compute the subtle differences between any other two major terms.
enhance computational stability of general spectral models. and achieve good results of
monthly numerical weather prediction. However. just because of adopting the above full
semi-implicit time difference scheme. the time integraticn of spectral model needs
simultaneous spectral prognostic equations and numerical iteration. In some degrees. this
restraint counteracts the advantage of enlarging time step of integration using this scheme.
Heretofore. further theoretical/practical studies on more suitable semi-implicit time
difference scheme are necessary and still remain for general spectral models. Specially we
need to go deep into study how to enlarge time integration step (or enhance computational
stability under the same time integration step) by properly adopting rime difference scheme
to those linear terms. which still be included in spectral model and related to activity of
atmospheric high-frequency gravity waves, and also need to study how to hold the
advantage that all spectral coefficients of prognostic equations. especially of Helmholtz
divergence equation. can be worked out without any numerical iteration at the same time.

The purpose of the present paper is to design a more suitable semi-implicit time
difference scheme in basic dynamic framework of spectral models according to
computational stability analysis conducted to the linear term time difference scheme in
simple harmonic motion equation. and apply it into a self-designed spectral dynamic
framework by adopting a kind of revised time-explicit-difference scheme to these linear
terms still included in general spectral model governing equations. Numerical studies on
enlarging (enhancing) time step (computational stability) also have been done under the
precondition that all spectral coefficients of prognostic equations. especially of Helmholtz
divergence equation. can be computed without any numerical iteration.

II. DESIGN OF A SEMI-IMPLICIT TIME DIFFERENCE SCHEME OF SPECTRAL MODEL

The numerical algorithm of spectral model usually treats time-tendency of each
prognostic variable as summation of several relatively independent parts. and then
introduces time-split method to separately integrate atmospheric dynamic processes and
physical parameterizations at every time-integrating step. Additionally. physical
parameterizations always incorporate into a spectral model in physical grid space. Hence.
for both horizontal diffusion and diabatic physical parameterizations. their time-tendency
contributions to each prognostic variable can be incorporated into a spectral model
separately by utilizing the time-split method. For a spectral atmospheric model using in
numerical weather prediction. its adiabatic dynamic framework adopting the time-split
method is the core part of spectral method application. Because one dynamic framework of
spectral model can perfectly include spectral method and semi-implicit time difference
scheme, it is convenient and helpful to give prominence to the research of semi-implicit
time difference scheme of spectral model by using well-designed dynamic framework.
Relative to any spectral models including more complex thermodynamic processes. using
the spectral dynamical framework composed of simplified prognostic equations is no
influences on sufficient discussion of semi-implicit time difference scheme. Therefore,
utilizing a basic dynamic framework of spectral model, in which all of horizontal diffusion
terms have been omitted, will carry out the following discussion. Here. as a matter of
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convenience. the following specifications are introduced: a double-under-bar "=
represent a matrix. arrows "y~ and "—" denote a column and a row vectors over the

vertical grids. respectively.
1. The Problem of Popular Semi-Implicit Time Difference Scheme of Spectral Models

With spherical sigma vertical coordinates. the equations of basic dynamic framework
of spectral model can be expressed in the following vectoral form:
vorticity equation:

a—au —Zy =0, ¢))
!
.divergence equation:
DY | Gk —dy = Vi@ + RBTy + RT,¥InPs) — V*[RB (T, —T) J,
(2)
continuity equation:
alnPS o
Jt —P=m- D+ ’ (3)
thermodynamic equation
TX T,y —T,y =~ - Dy, W
humidity equation:
d
—aq% —Qy =0, (5)

where 7 is the absolute vorticity and {=9— f is the relative vorticity, D is divergence.
temperature 7' (virtual temperature T'.) has been divided into two parts 7' (I",) and T,
T, only is a function of ¢, the others are conventional denotation of spectral model. and

the following definitions (6a) — (61) are introduced:

_7%_ N U sy )
T, = (1 = 2 HA(UT) a)U(VY R (6a)
! 1 a
= DT' — aT — aTO(aJ V. VinPsdo — J V + InPsdo|do —
do Jdo 0
IfTUJV VInPs — IiT J (D + V. VInPg )da+ V VInPs, (6b)
)
_ 1 9, 13
Z= g T w e (6¢)
_ 1 14
d_a(l-—,u)aﬁ +aa,u o (6d)
F,,:77V—RF“ ilnPS—a'aa—U, (6e)
RT', .9V
F_va—~—(1—p>—1nP5—ag—a, (60)
mw= (VGI.VGZ,V%,'“,VUK), (6g)
P=—m-(V.VInPsV, (6h)
__;_ ry_ 1 d _ -39 -
Q= 2l )8/\““ q) 2 (Vg) +Dg Uao' (61)
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Additionally, all horizontal diffusion terms of prognostic equations have been omitted
because they can be incorporated into a spectral model separately by utilizing the time-split
method as mentioned above.

After adopting the time central difference scheme for time partial differential terms in
the left side of Egqs. (1) — (5), the implicit scheme for those terms related to gravity
waves in the right side of equations. and the explicit scheme for the other terms. we can
derive the popular semi-implicit time difference scheme of spectral models as the following

form:
6177¢ _Z¢ 209 (7&)
oDV + VE—dy =— V& +RB(T,—T)} J—
V:[RBT'y + RT,\ InPs], (7b)
8,UnPs) = P=—m D'}, (7¢)
BTy —Ti\y —Toy =—1-D'y, (7d)
dgyv — QY =0. (7e)
N t— & o
Here, the time difference operators %/ = ¥ = (l# and ¥' =

1 _ . . . )
E( Pre | P8) are also used, and the other terms at time ¢ omit their superscripts of

time.

From the above semi-implicit time difference scheme (7a) — (7e). it can be seen that
the absolute vorticity equation (7a) and humidity equation (7e¢) could be numerically
computed separately because they are all independent of the other equations. However.
Egs. (7b) — (7d) constitute a set of three linear simultaneous equations of prognostic
variables of divergence. surface pressure and temperature. With elimination method. one
can derive the following Helmholtz equation of divergence variable as

(14 222D R o RTY Y ) [0

) n(n+1>

= (D) ¥ +28ed} + « 20t X

«RT, (lnPS)“A‘J%— (8)

(s +Ev +RB ET'f-uTu—T')

nin + nn+1)
a

At - RB[T“N+2A1<T¢+TZ¢)—An-<Dw a4

n(n+l)

At « =——RT,{ [InPs™% 4+ 2At « P — At « (D )%],

where I denotes a unit matrix. Obviously. three-variable linear simultaneous equations

» In practice, the numerical algorithm of semi-implicit time difference of a spectral model is firstly
carried out by spectral coefficient prognostic equations. which are derived by using the orthogonality
relationship of spherical harmonic function to the prognostic equations expanded in terms of spherical
harmonic functions. And then the prognostic variables at next time step are gotten by numerical
summation of their spherical harmonic expansion. Because here discussion only focuses on semi-implicit
time difference scheme of spectral model. it is feasible and convenient with prognostic equations in the

vectorial form previous to spherical harmonic expansion.
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(7b) — (7d) can be solved without any numerical iteration in despite of introducing the
semi-implicit time difference scheme into divergence equation (7b). temperature equation
(7d) and surface pressure equation (7c¢c). After numerically computing D't¥ separately
based on Helmholtz equation of divergence (8). D' can be obtained from relationship of D'

:% (D™ + D). and variables T and InPs'™ at the next time step can also be

obtained by substituting D' into temperature equation (7d) and surface pressure equation
(7¢c). respectively.

As shown in the above semi-implicit time difference scheme. in the left side of
equations (7a) — (7e) all terms are differenced by explicit time scheme as nonlinear parts
" except for time partial differential terms. However. in the interaction terms (U and 3V )
between absolute vorticity and motion. only interactions between relative vorticity § and
motion. i.e. {U and {V. represent the essential nonlinear terms. the other major parts fU
and. f V interaction between geostrophic vorticity f and motion. are linear because 7={-+
f. f is about 10 times magnitude of ¢ and geostrophic vorticity f is independent of time
variable . In fact some major liner terms are still concealed in Z and d in the left side of
vorticity equation (7a) and divergence equation (7b).

Introducing the following definitions of nonlinear terms:

RT - U

_ Il'i
F,=¢tV — . aAlnPs—aad, (9a)
— RT' 3 - aV ,
~ T __ v 2N 9 _ gr
F,.=8 8! #)aﬁlnPS vl (9b)
and
7 _ 1 dz _ 1 9%
Z_a(l—;zz) aAﬁ‘ B a;zF"’ (10a)
51 9%, 1344+
d*a(l—;ﬂ)aAF”Laa,uF“ . (10b)
we can entirely rewrite variables Z and d as linear and nonlinear parts, 1.e. ,
Z=Z—fD—%2V, an
= N
—a+ 8- 2. (12)

Of the semi-implicit time difference scheme adopted by spectral models in a worldwide
basis, the vorticity equation (7a) and divergence equation (7b) can be expressed as the

following alternative forms according to the two relationships above.

sty — 24 + oy + vy =0, (138)
SDY + VE —dy — (fu —%Lw]:— Vi@ + RB (T, — T)§ J—
VHRBT'V + RTo InPs) , (13b)

. . d d . d
where the relationship 8_73:5(§+f):8_§ has been used.
Above theoretical analyses clearly show that the above semi-implicit time difference

scheme has been changed much in form compared with those original ones of spectral
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models because absolute vorticity and divergence are generally used as basic prognostic
variables of perfect numerical prognostic equations. but the basic principle is consistent
with that proposed by Bourke (1974). Meanwhile. above analyses also clearly indicate
that semi-implicit time difference scheme just partly is incorporated into the popular
spectral time difference scheme. in which prognostic equations still include some important
linear terms differenced by time explicit scheme and directly related to atmospheric high-
frequency gravity waves (involved in atmospheric divergence). Furthermore. the popular
semi-implicit time difference scheme artificially introduces unbalance between pressure-
gradient force and Coriolis force terms while numerically computing their small difference
between large quantities because of two terms differenced at different time. From above
analyses. one can also easily find that the spectral coefficient variables of £. D, U and V
expanded in terms of spherical harmonic functions could counterchange by introducing
stream and potential functions. and the corresponding spectral coefficients of f §. fD
could be computed by virtue of the following recurrence relationship of associated

Legendre polynomials:

m — 1 _ m m
puPr ) = ot l[(n + 1 — m)Pr () + (n + mOP7_ (10 ],

But above equations (13a) and (13b) must consist of simultaneous spectral prognostic
equations and compute with numerical iteration method if the terms parenthesized in the
left side of two equations are directly differenced by implicit time difference scheme. As
mentioned in the introduction, Zheng (1989) already successfully designed a full semi-
implicit time difference scheme for a global spectral model. in which implicit- and explicit-
time differences are employed to linear and nonlinear terms. separately. By virtue of the
nature that simultaneous spectral prognostic equations should be computed with numerical
iteration. this scheme could effectively overcome the problem about subtle differences
between any two major terms. But using this scheme of iteration obviously counteracts the
advantage that implicit scheme can enlarge time step of integration to some extent. All
factors show that. presupposing the advantage without any numerical iteration for spectral
coefficients of prognostic equations. it is worth conducting further theoretical/practical
studies on enlarging time integration step (or enhancing computational stability under the

same time integration step) of semi-implicit time difference scheme.
2. Analyses on Computational Stability of Time Difference Scheme

With particular purpose to the problem of popular semi-implicit time difference
scheme of spectral models. we expect that a kind of revised time-explicit-difference scheme
could be designed out for these linear terms still included in spectral model. And this
revised scheme only need change a little numerical algorithms of the popular scheme so as
to efficiently enlarge time integration step (or enhance computational stability). Because
the prognostic equations of an atmospheric spectral model are very complex. and it is very
difficult to analyze their computational stability directly. in next two sections the following

simple harmonic motion equation

dF

= i1oF (14
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is used to investigate the application possibility of our revised time-explicit-difference
scheme by comparing the computational stability criteria of Eq. (14) that is differenced by
following two schemes. One is that the term in the right side of Eq. (14) is directly
explicit differenced with the left side term center differenced. The other is the same as the
previous one except for differencing the term in the right side of Eq. (14) with our revised

explicit time difference scheme.

(1) Computational stability for directly explicitly differencing the linear term in the right
side of Eq. (14)

In the first scheme the term in the right side of Eq. (14) is directly explicitly
‘differenced with the left side term center difference. the corresponding difference equation

of the simple harmonic motion equation (14) is
FG+ &) —F@— A
240t

Apparently. F(t)=F(0)Je™ is one analytical solution of Eq. (14). Thus presuming F(¢)

= ioF(¢). (15

= F (0)e "as one solution of its difference equation (15) and substituting it into

Eq. (15). one can derive

e — e = — 2i0At, (16)
By setting N=e™"*¥, Eq. (16) can be rewritten as
N? 4+ 2i0¢tN — 1 = 0. (17)

Its analytical solution should be

N =—iohAt + ~/1 — (cAr)?. (18)
If 6At>1, 1—(oAt)*<C0 should be true. N should be an imaginary number and its moduli
satisfy the following relationship

NI = [(oan? + 2086 /(oADE — 1 + (ote)? — 11"
> [1 + 200t Vo2 — 1] _ (19)

One modulus of them should be larger than real number 1. In this case the numerical
computation of Eq. (15) is unstable with the result that F=F (0)(N)" is increasing with
number n enlarging. Contrariwise. if cAr<C1, then N should be a complex number and its
moduli always have | N|=1. Thus the numerical computation of Eq. (15) is stable because
its two solutions never increase with number » enlarging. Above analyses show that in the
scheme using directly explicit difference for the term in the right side of Eq. (14) and
center difference for the left side term, the corresponding computational stability criterion
should satisfy the following relationship

1

ot <1, l.e. Atéd. (20)

It means that the time integrating step At must be less than the smallest scale included in

time variable ¢.

(2) Computational stability for differencing the term in the right side of Eq. (14) with our

revised explicit time difference scheme

With center time difference scheme for the term in the left side of Eq. (14). and the
following difference scheme (21) for the right side linear term,
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T (E
F'=F@&) + AtB (dt

one can yield the corresponding differenced equation as

e At)ZZtF(t =80 _ ic[(1 + B)F(t) — BF«t — A ], 22>

where B is an adjustable parameter. And on the condition of B=0. the scheme (21) is

=1+ BF@) — BF( — A, 2D

[e—avoe]

identical with the first scheme of directly explicitly differencing the linear term in the right
side of Eq. (14).

Analogously, substituting F () =F (0)e™"™¥

into Eq. (22) and conducting simple
derivations yield
N? 4 2igAt(1 + B)N — [1 + 2i6AtB] = 0. (23)
Its solutions are
N =—ioAt(1 + B) = ~1 — [6At(1 4+ B))? + io2AtB. (24)
Its computational stability needs |N|<{1.
When B7#0. Eq. (24) is a complex number in the following form:

M=ca + ~a + bi. (25)

Its moduli satisfy

IM| = {[c+ r'/%sinf]? + [r/%cosp?}"*

= {c? 4 2cr%sinB + riV2 < {2 + 2072 + #}VE = |c 4 7). (26)
where r={a*+&*}'"?, =arctg % ﬂzgjpzz—kﬂ, £=0,1.2.++. From Eq. (26). one has |M|

<1 if only ¢+-V2<1.

In Eq. (25) setting. M=N, ¢=—Ata(1+B). a=1—[Atc(1+B) ]*. b=2At6B. and
substituting them into the relationship ¢+7"2<{1. one has

<L (1 — ot (27)
If the following relationship
{1 — Latel + By 1212 + (o28eB)2 < [1 + Ato(1l + By I

is true. i.e. relationships

(628tB)* << [1 + Aol + B) 1P« {[1 + &1+ B)J* — [1 — Ata(1l + B) J*}

and

(1+B)+[1+Ats(l+ B}
BZ

hold. then we can have | N |<C1 and stable numerical computation. Relationship (28) is

the computational stability criterion of Eq. (22). It shows the inter-constraint-relation

Ate < (28)

among integrating time step At. wave frequency ¢ and the adjustable parameter B when
Eq. (22) is stable with time integration.

Obviously, If B2 —1, we have 1+B>=0 and 1+ A t¢(1+B)=0. From relationship
(28) we have

- 2 g
Am<(1+3) [1 EZAm(lJrB)] g(1;—23)_ (29)
Therefore, if only
a+B8 1
At<——B2 S (30)
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and BZ=—1. B#0 hold at the same time, the relationship | N|<(1 is always true. The
difference scheme (22) can satisfy the requirement of computational stability.
Comparing relationship (30) with (20), one can easily find that only if
a+ B
BZ
holds. using the second difference scheme (22) can lose the restriction of computational
stability in relation to using the first scheme (15). And then it can enlarge the time step of

=1 3D

numerical integration. The reasonable range of B in Eq. (31) should satisfy

<1+2\/5

—1<B and B # 0. (32)

For example. setting B=1. which is identical with differencing the linear term of the
equation with a 2F () —F(t—A t) time smooth operator. According to relationship (20).

if only

At<(1 ;—ZB)

satisfies. the second difference scheme (22) should be of numerical computational

(33

1 _ 2
o o

stability. Furthermore. compared to the first scheme (15). theoretically it can still hold
the numerical computational stability after the maximum time step of scheme (15) is
doubled.

Based on the fact that the general numerical algorithms of spectral models still include
some important linear terms which are differenced by time explicit scheme and directly
related to atmospheric divergence (i. e.. high-frequency gravity waves of atmosphere).
the comparative analyses of the previous two sections indicate that properly incorporating
the revised rime-explicit-difference scheme (21) into these linear terms of spectral model
should make the computational costing more economical. Meanwhile it still holds the
advantage that all spectral coefficients of prognostic equations can be numerically
computed without any iteration. The following design of semi-implicit time difference
scheme of spectral model is just based on the above two specific characteristics.

(3) Design of an improved semi-implicit time difference scheme

According to the previous discussion, we design an improved semi-implicit time
difference scheme in our basic dynamic framework of spectral model as the following

vectorial form:

8:’7* - 7+ =0, (34a)
8Dy + VE —dy =— V:[@ +RB(T. —T)y -

VIRBT'Y + RT,§ InPy'), (34b)
8,UnPs) —P=—m- D'y, (34¢)
0Ty — Ty —Toy =— D'y, (34d)

Here. all definitions are same as the previous ones, terms at time ¢ also omit their
superscripts of time. And with scheme (22). the term Z in the left side of the vorticity

equation (34a) is differenced timely as the following form:
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7oL KT ey Bap ¥
Z_a(l 5 Al v+ ST 5 l“PS sy
BT 0, joU]
a )#(WJ”FV P — 6 5 (35)

—7— B[f(D D) 4 ZQ( oy 1

where B is a selectable and adjustable parameter. and can be defined through numerical
experiments. Similarly. in the left side of the divergence equation (34b) the term d is
differenced timely as the following form:

= 1 RT', i U
d_a(l /1)8/1( + /7 - a InPS 630‘/}+
1 ( , RT'. j_ AN
LRI SR S InPs— o an (35b)
=d+ B[f(z - — %2( U—u—2 J
With the above two relationships. the semi-implicit difference scheme (34a) — (34e) can
be expressed as the following algorithms that are more easily to do numerical computation:
oav —zy + B0 —Dyy + By —veeny =, (36a)
A t—A¢ Z‘Q 7 Yi—A¢
0Dy + VE—dy =B f& =Dy — T2 Uy
=fv[¢\+RB(T —T){]J— vV RB’I v = RT,y InPJd) ., (36b)
6,UnPy) = P=—mw- DY, (36¢)
STV —T,v — T, 4 :E'E'¢, (36d)
Sgv — Qv =0. (36e)
Compared the improved scheme (34) with the scheme (7) widely used in numerical

algorithms of spectral models. it is significantly different that the linear parts of —j‘DAZ(;r

2802 . . .
V' and ~f§47U have been separated from the dynamic advection terms in the general

difference equations of vorticity and divergence. And those linear parts are differenced
with the scheme (21) after introducing an adjustable parameter B. While the relationship
B=0 holds. the improved scheme (34) can be {ully reduced back to the popular scheme
(7). It is not only helpful to numerical comparative analyses of two semi-implicit time
difference schemes of spectral model. but also helpful to make choice of the adjustable
parameter B through numerical experiments. In addition. it should be noted that the
Helmholtz equation of divergence variable of the improved scheme is

|:I+At7ﬂ(na+l)(RBT+RYU¢ :](D*)HA,:(D¢)[7A[+2A[d¢ +

(B — vy ]y je 22D pa,

d

24 rB{[f<§ ]y —

[oy +Ey +RE[ LI — |+ Lk TanPo T 4 G

2
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At n(?la—g— 1)R§' [(TV)/-A, + ZAI(T1¢ + 711¢ y — A[E' (D¢ )I—A/]_‘x_

A[_n(nr—z— 1)
a

RT,y [(nPo)™>" 4 28 tP — Atmw + (D )™,
And the improved semi-implicit scheme still has the advantage that all spectral

coefficients can be worked out without any numerical interation.
ITI. RESULTS OF NUMERICAL EXPERIMENTS

Utilizing a T21L5 global spectral model dynamic framework that includes the
improved semi-implicit time difference scheme by introducing some terms related to an
adjustable parameter of time integration. (This framework is designed ourselves on the
basis of some important globe integral relations such as energy conservation. and is
compatible well with the common numerical algorithms of the spectral dynamic framework
used internationally. Moreover. it incorporates the role of model topography and includes
all numerical algorithms only except for diabatic physic parameterizations. In another
paper it is going to be published in detail.) 32-day-integration numerical experiments have
been carried out to predict the July monthly mean conditions of general atmospheric
circulation with National Meteorological Center (Beijing. China) objective analysis data at
12 GMT 29 June 1995 as initial fields. According to results of those experiments. studies
are conducted with two specific purposes. Firstly. comparing results with different
adjustable parameter B we investigate the effects of the improved scheme on computational
precision of dynamical framework of a spectral model after effectively overcoming the
defect of commonly used time difference scheme of spectral model only partly using semi-
implicit integrating scheme: Secondly. under the precondition of keeping the same
computational precision as that B =0 case. we also investigate effects of introducing

adjustable parameter B of the improved scheme on computational stability and costing.
1. Effects on Precision of Monthly Numerical Weather Prediction

In the section. with the same numerical integration time step of 45-min numerical
experiments are carried out. separately. for the following conditions B=0. 0.10. 0. 15.
0. 20 and 0. 25. After integrated the case introduced in previous paragraph. and compared
the anomaly correlation coefficients (RT. RU and RV) of monthly mean fields of
temperature. zonal wind component and meridional wind component at 500 hPa level in
which U.S. NCEP monthly mean re-analyzed data 49-year-averaged from 1950 to 1998 are
used as the corresponding climatic monthly mean observations. the following results could
be achieved. Out of four numerical experiments. the highest verified values are achieved in
the case B=0.15. The 500 hPa RT. RU and RV values are 0.26. 0. 27 and 0. 35 over the
whole globe. respectively. Over the Northern Hemisphere their values are also up to
0.49. 0. 28 and 0. 41. respectively. For the case B=0. however. RT. RU and RV values
are 0. 26, 0. 27 and 0. 32 over the whole globe. and 0. 49, 0. 30 and 0. 40 over the Northern
Hemisphere. respectively. The result of the former case is slightly better than the latter
case. It suggests that with a suitable adjustable parameter B the improved scheme could
overcome the defect of popular time difference scheme of spectral model only partly using
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semi-imlicit difference scheme to some extent. And under the same time step of numerical
integration as the commonly used semi-implicit scheme. adopting the improved scheme can
more efficiently prevent fast internal- and external-gravity waves from abrupt increment so

as to achieve better precision of numerical weather prediction.
2. Effects on Time Step of Numerical Integration of Spectral Model

With the same adjustable parameter B=0.15 monthly numerical experiments are
carried out for time steps 50. 55. 60. 65 and 70 min.. respectively. According to those
numerical results we could investigate the effects of introducing adjustable parameter B of
the improved scheme on computational stability and costing under the precondition of
keeping the same computational precision as that B=0 case. Results show that all 32-day
experiments are of computational stability except that integration of the last one with time
step 70 min. crashes down on the 13th model day. Furthermore. out of the first four
stable numerical experiments, the results with time step 55 min., referred to as Exp. T1,
is the best of all. Therefore. in this paper its results are presented in Table 1 in detail. To
make comparative analyses, another numerical experiment, referred to as Exp. T2, is also

done with same time step 55 min. while the adjustable parameter B is 0.

Table 1. 500 hPa Monthly Mean Anomaly Correlation Coefficients of Experiments T1 and T2

Monthly mean anomaly
Value of correlation coefficients
. Time step of Verified Verified Numerical adjustable
Case | . . Ry Ru Ry
integration month area experiment parameter o
B temperature zonal meridional
wind wind
) Globe T1 0.15 0. 26 0. 31 0. 34
J“g 55 July T2 0. 00 0.24 0.24 0.25
une .
1995 minutes 1995 Northern T1 0.15 0.48 0. 34 0.42
’ Hemisphere T2 0. 00 0. 48 0.29  0.44

The corresponding climatic monthly mean observations are average values of U. S. NCEP 49-year

(1950—1998) monthly mean re-analyzed data.

Table 1 shows that over the whole globe Rr. Ry and Ry values of Exp. T1 are 0. 26.
0. 31 and 0. 34. respectively. For the case with B=0 and time step 45 min. however. its
Ry. Ry and Ry values are 0. 26. 0. 31 and 0. 32, respectively. There are only small
differences between results of above two numerical experiments over the whole globe.
Furthermore. over the Northern Hemisphere differences between Rr. Ry and Ry values
also have the similar characteristics to those of globe (referred to the previous section).
Above comparison shows that applying the improved semi-implicit time difference scheme
with B=0. 15 and 55 min. time step still could work out the pretty much the same
numerical results as those of integration applying the commonly used semi-implicit scheme
of spectral model with time step 45 min. As the 32-day case stands. Exp. T1 could save
lots of computational costing compared to the commonly used scheme with 45 min. time
step. With a personal computer, the former time costing is lessened 24 min. than the
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latter. Moreover. it is also evident that most values of Ry. R; and Ry of Exp. T1 are
higher than Exp. T2. It is consistent well with the above analyses that predicting precision
could be improved by introducing a suitable adjustable parameter B.

IV. CONCLUSIONS

Based on the computational stability analysis conducted to the linear term time
difference scheme in simple harmonic motion equation. an improved semi-implicit time
difference scheme is designed in this paper. With an own-designed T21L5 global spectral
dynamic framework primary numerical experiments have also been carried out to verify
practicability of the improved scheme. After the comparative analyses the following
conclusions can be summarized.

(1) Theoretical analyses indicate that the semi-implicit time difference is just partly
applied in the general time difference scheme of spectral models. And the popular semi-
implicit time difference scheme still includes some important linear terms differenced by
time explicit scheme. Furthermore. these major terms are directly related to fast internal-
and external-gravity waves of atmosphere (related to divergence terms). Additionally,
due to using time difference on two terms at different time, the popular scheme artificially
introduces unbalance between pressure-gradient force and Coriolis {orce terms while
numerically computing their small difference between large quantities.

(2) In our study. an improved semi-implicit scheme of spectral model is designed by
introducing a suitable adjustable parameter and adopting a kind of revised time-explicit-
difference scheme to these linear terms still included in spectral model governing
equations. and it can enlarge (enhance) the time-step (computation stability) under the
precondition that all spectral coefficients of prognostic equations. especially of Helmholtz
divergence equation. still can be computed without any numerical iteration.

(3) Numerical results of one case prove that under the same time step of numerical
Integration as the commonly used semi-implicit scheme. adopting the improved scheme not
only can more efficiently prevent fast internal- and external-gravity waves from abrupt
increment. but also can make the smaller difference between major terms of pressure-
gradient force and Coriolis force more precise. Additionally. with an introduced adjustable
parameter 0. 15 the time step of the improved scheme could be enlarged by 10 min. more
than the commonly used scheme while they work out the pretty much the same monthly
numerical results.

(4) For a spectral atmospheric model using in numerical weather prediction. its
adiabatic dynamic framework adopted the time-split method is the core part of spectral
method application. and can perfectly include spectral method and semi-implicit time
difference scheme. Using a spectral dynamical framework composed of simplified
prognostic equations has no significant influences on discussion of semi-implicit time
difference scheme of spectral model. Results achieved in this paper are still suitable and
general to any spectral model including more complex thermodynamic processes.

(5) The further studies on the improved semi-implicit time difference scheme of
spectral model should be done by incorporating it into a diabatic spectral model with

perfect physic parameterization.
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