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ABSTRACT

Initial perturbation scheme is one of the important problems for ensemble prediction. In this paper,
ensemble initial perturbation scheme for Global/Regional Assimilation and PrEdiction System (GRAPES)
global ensemble prediction is developed in terms of the ensemble transform Kalman filter (ETKF) method.
A new GRAPES global ensemble prediction system (GEPS) is also constructed. The spherical simplex
14-member ensemble prediction experiments, using the simulated observation network and error character-
istics of simulated observations and innovation-based inflation, are carried out for about two months. The
structure characters and perturbation amplitudes of the ETKF initial perturbations and the perturbation
growth characters are analyzed, and their qualities and abilities for the ensemble initial perturbations are
given.
The preliminary experimental results indicate that the ETKF-based GRAPES ensemble initial perturba-

tions could identify main normal structures of analysis error variance and reflect the perturbation amplitudes.
The initial perturbations and the spread are reasonable. The initial perturbation variance, which is approx-
imately equal to the forecast error variance, is found to respond to changes in the observational spatial
variations with simulated observational network density. The perturbations generated through the simplex
method are also shown to exhibit a very high degree of consistency between initial analysis and short-range
forecast perturbations. The appropriate growth and spread of ensemble perturbations can be maintained
up to 96-h lead time. The statistical results for 52-day ensemble forecasts show that the forecast scores of
ensemble average for the Northern Hemisphere are higher than that of the control forecast. Provided that
using more ensemble members, a real-time observational network and a more appropriate inflation factor,
better effects of the ETKF-based initial scheme should be shown.
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1. Introduction

Attributed to initial errors, model errors, and

weather pattern interaction, the forecast skill of nu-

merical weather forecast has been limited to the

uniform certainty forecast for the nonlinear atmo-

spheric motion. Leith (1974) pointed out that en-

semble prediction could improve forecast skill, and

since then the research of ensemble initial perturbation

has been greatly developed. Many schemes such as

Monte Carlo stochastic perturbations (Hollingsworth,

1980) and time lagged average perturbations (Hoff-

man and Kalnay, 1983), aimed at estimating analy-

sis error probability distribution function, have been

successively developed. Based on the analysis of nu-

merical prediction error, the Breeding of Growing

Modes (BGMs) and improved BGM schemes (Toth

and Kalnay, 1993, 1997) used at the U.S. National

Centers for Environmental Prediction (NCEP) have

been developed. These techniques obtained a group of

pairing initial perturbations through adjusting analy-

sis errors. The Singular Vector (SV) method (Buizza

and Palmer, 1995; Molteni et al., 1996) was success-

fully applied at the European Centre for Medium-

range Weather Forecasts (ECMWF) by identifying the

most rapidly increasing modes in the operational
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ensemble prediction. The ensemble initial pertur-

bations constructed by observational perturbation

scheme (Houtekamer et al., 1996: Houtekamer and

Mitchell, 1998) also well presented the uncertainties of

analysis (Buizza et al., 2005). Over the past decade,

Chinese scientists have embarked on the development

of ensemble forecast and achieved some exciting re-

sults (Fan, 1999; Li and Chen, 2002; Yang et al., 2002;

Chen et al., 2003). Zhong and Wang (2004) studied

the feasibility of physical ensemble for weather and

climate feature of the abnormal flood during summer

in the eastern China by use of the physical ensemble

construction method of MM5 limited regional model.

Chen and Yan (2005) designed a new initial pertur-

bation method for ensemble mesoscale heavy rain pre-

diction, known as the Different Physical Mode Method

(DPMM). To improve the ensemble forecast, the ap-

proach adopted by the DPMM attempted to gener-

ate initial perturbations that had reasonable mesoscale

circulation structures, and could reflect the uncer-

tainty in convective instability. The BGM and SV

method, however, are still confined to precisely de-

scribing the analysis uncertainties (Wei and Toth,

2003), while the DPMM only applied well to the

mesoscale weather system research. Therefore, more

investigations on ensemble forecast initial perturba-

tion schemes are needed.

Ensemble initial perturbation schemes aim to gen-

erate unrelated initial perturbations so as to make en-

semble initial perturbation covariance interpret anal-

ysis error covariance of initial time more accurately.

Therefore, error structure and perturbation ampli-

tudes illustrated by initial perturbations become two

key problems in the research of ensemble initial per-

turbations. The error structure reflects the normal

modes of analysis error variance distribution in the

phase space, while amplitude of the initial pertur-

bations should represent equivalent relations between

analysis error and forecast error, as well as reflect di-

rectly on the spread of the forecast ensemble. Using

a constant factor, BGM scheme’s initial perturbations

cannot reflect the influence of the spatial variations

of observation density and accuracy on the analysis

fields, as well as the adjustments of different forecast

error variations. Hamill et al. (2000) pointed out

that regional rescaling factor adopted by improved

BGM scheme can also bring about greater illusive

noise of ensemble spread. The observational pertur-

bation scheme could lead to smaller ensemble spread

with leading integration time, though it can absorb

observation information. Derived from the ensemble

transform Kalman filter (ETKF) theory (Bishop et al.,

2001), the ETKF initial perturbation scheme (Wang

and Bishop, 2003) offset the disadvantages of BGM

scheme by using a transform matrix restricted in en-

semble subspace. It transforms forecast perturbations

into analysis perturbations in accordance with Kalman

filter error covariance equation. In addition, ETKF

scheme is less costly. Bishop et al. (2003) pointed out

that ETKF initial perturbation scheme can estimate

the prediction and analysis error covariance, more ac-

curately thus making it better than BGM ensemble

scheme. Wang and Bishop (2003) also showed simi-

lar results by comparing BGM and ETKF ensemble

scheme.

In China, the research of ensemble initial pertur-

bation is still immature. On the other hand, when

GRAPES global numerical forecast system has been

achieved primarily, and the related scientific problems

of ensemble forecast are necessary to develop. This

paper attempts to establish the GRAPES global en-

semble prediction system (GEPS) after preliminary re-

search of ETKF initial perturbation had been carried

out to investigate the structure of initial perturba-

tions, the characters of the increasing perturbations,

and the forecast efficiency. Section 2 mainly deals

with the ETKF initial perturbation scheme, while en-

semble forecast experiments are carried out in Section

3. Section 4 discusses the feature and analysis of the

GRAPES ensemble forecast initial perturbations. Sec-

tion 5 focuses on the verification of the ensemble fore-

cast. Finally, summary and conclusions are given in

Section 6.

2. ETKF initial perturbation scheme

The ensemble transform Kalman filter (ETKF) is

an adaptive observational method first derived from



564 ACTA METEOROLOGICA SINICA VOL.23

Kalman filter theory. It can approximatly represent

the analysis error covariance matrix and the forecast

error covariance matrix in terms of ensemble pertur-

bations to construct ensemble initial perturbations.

ETKF initial perturbation scheme extends the BGM

scheme while getting rid of unchanged analysis error

variance and obtaining orthogonal perturbations. In

terms of uncertainty of model error, observational er-

ror, and subsequent analysis error covariance, ETKF

therefore is a suboptimal Kalman filter (Daley, 1991).

Compared to other ensemble Kalman filter, forecast

error covariance in ETKF is only to approximately es-

timate the analysis error covariance at the initial time,

but does not update the ensemble mean state.

For the ensemble forecast, X
f and X

a are de-

fined as forecast and analysis perturbations in con-

trast to control forecast, respectively. Mathemati-

cally, X
f = (xf

1 − xf
0, x

f
2 − xf

0, · · · , xf

K − xf
0) and

X
a = (xa

1 − xa
0, x

a
2 − xa

0, · · · , xa

K − xa
0), where x

f
i and

xa
i (i = 1, 2, · · · ,K) denote the K ensemble forecast

and analysis perturbations. The superscript “a” is the

analysis from data assimilation, while the subscript

“0” denotes control forecast. The ensemble-based fore-

cast and analysis covariance matrices can then be ex-

pressed as

P
f = Z

f · (Zf)T, (1)

P
a = Z

a · (Za)T, (2)

where P
f and P

a refer to ensemble forecast and

analysis error covariance, respectively. The super-

script “T” indicates the matrix transpose. Let Z
f =

X
f/
√
K − 1,Za =X

a/
√
K − 1, and K is the number

of the ensemble members. For a given set of ensemble

forecast perturbations Z
f , the analysis perturbations

Z
a can be solved from the Kalman filter error covari-

ance update equation

P
a = P

f − P
f
H

T(HP
f
H

T +R)−1
HP

f , (3)

where R is observational error covariance matrix, and

refers to linear observational operator that converts

forecast grid value to observational station. ETKF

transforms forecast perturbations into analysis pertur-

bations through Eq. (4).

Z
a = Z

f · T , (4)

where T is transformation matrix from forecast per-

turbations into analysis perturbations in the ensemble

subspace. Substituting Eqs. (1) and (2) into Eq. (3),

we can obtain transformation matrix T ,

T = C(Γ+ I)−1/2. (5)

Notes that columns of the matrix C contain the eigen-

vectors of (Z f)TH
T
R

−1
HZ

f , and the corresponding

eigenvalues are nonzero elements of the diagonal ma-

trix Γ. Since (Z f)TH
T
R

−1
HZ

f is a real symmetric

matrix, the corresponding eigenvalues are real, and

the eigenvectors are orthogonal. That the analysis

perturbations produced by ETKF initial perturbation

scheme are orthogonal in standard observational space

is an important feature. In Eq. (3), the error covari-

ance varies with the differences of observation density

and the precision in the spatial distribution due to the

effect of observation operator H and observation er-

ror R. Consequently, for a given set of ensemble fore-

cast in an optimal assimilation scheme, forecast per-

turbations covariance matrix from ensemble is equal to

the real forecast error covariance matrix, therefore the

analysis perturbation covariance matrix transformed

by ETKF must be strictly equal to real analysis error

covariance matrix.

The forecast perturbations are centered about the

ensemble mean (or control forecast), i.e.,
K∑

i=1

zf
i = 0.0.

However, this does not ensure that the corresponding

analysis perturbations produced by ETKF to neces-

sarily have the same feature (
K∑

i=1

za
i 6= 0.0). Thus, to

ensure that the analysis error covariance is invariable,

as well as to center the analysis perturbations about

the control analysis, we employ the spherical simplex

centering scheme (Wang et al., 2004) to create the ini-

tial ETKF perturbations. That is, to change Eq. (4)

into

Z
a = Z

f
T · CT, (6)

where C
T is transpose matrix of the matrix C in Eq.

(5). This centering scheme is capable of maintain-

ing the original attributes of initial ensemble pertur-

bations when the numbers of the ensemble members

are not too large.

Since the degrees of freedom of forecast model

state space are larger than the number of ensemble
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members and that model error is not considered, in

practice, the analysis error covariance obtained from

the covariance of the transformed ensemble in Eq. (2)

is much smaller than the error covariance. To avoid

this problem, the inflation factor method (Wang and

Bishop, 2003) is adopted to efficiently ensure that the

global ensemble error of 12-h forecast in observational

space is identical to the global control forecast error.

Mathematically,

Z
a

i = Z
f

iT i · CT

i ·
∏

i
, (7)

where
∏

i is the scalar inflation factor at time ti
(i = 1, 2, · · · , refers to different cycling time), and it
is defined as

∏
i
=

∏
i−1

√
αi =

√
α1α2 · · ·αi. (8)

Parameter αi is expressed as αi = (d̃
T

i d̃i−N)/
K−1∑
k=1

λi,

and di is the difference between observation value and

forecast value in observational space at time ti, also re-

ferred as innovation. K is the ensemble member, and

λi is the diagonal element of Γ in Eq. (5). N denotes

the valid observation number. αi in Eq. (8) is solved

statistically for global observational system with the

assumption that the forecast errors and the analysis

error are uncorrelated. When the 12-h ensemble per-

turbation variance is not equal to the control forecast

error variance, αi is forced to adjust to make ensemble

perturbation variance in accordance with control fore-

cast error variance in the global observational space.

Using information from observation data, ETKF

initial perturbation method transforms the mode of

ensemble perturbations in error subspace and adjusts

the amplitudes of perturbations according to error co-

variance update equation. Accordingly, it establishes

the relationship between analysis perturbations and

the spatial distribution and quality of observations,

and properly reduces larger variance in larger ensem-

ble and fewer adjustments to smaller ensemble. This

method thus efficiently gets rid of rigid estimates of

analysis error variance due to the lack of the infor-

mation of observation data in BGM method while

still holding the orthogonal characters in observational

space.

3. Ensemble forecast experiments

3.1 Simulated observation data

To simplify the problem, we assume that the spa-

tial distribution of observation system is invariant in

the cycling process of ensemble forecast system, and

this simplified simulated observational system is used

to evaluate the effect of ETKF initial perturbation

scheme and its response to the decrease of forecast

error. We assumed that the observational system only

consists of three elements: wind (u, v) and tempera-

ture (T ) at 850, 500, and 200 hPa. The analysis fields

of T213 with a horizontal resolution of 0.5625◦ at 0000

and 1200 UTC are interpolated horizontally to the

Fig. 1. Network of simulated observational stations. Black dots denote locations of observational stations.
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5186 global observational stations (Fig. 1) to create

simulated observation data. Even though these set-

tings of the experiment are not coherent to real obser-

vations, they do not affect the numerical experimen-

tal results of ETKF initial perturbation scheme. As

the analysis of operational T213 has already included

the dynamical restrictions of initial guess and some

information about real observation data, the observa-

tion errors of ETKF scheme are slightly smaller than

that of the operational three-dimensional variational

(3DVAR) data assimilation system. Suppose obser-

vation errors are uncorrelated, the observation error

covariance matrix R is diagonal matrix.

3.2 Construction of initial perturbations

The experiments employ GRAPES global model

and 3DVAR data assimilation system. The horizon-

tal resolution of the forecast model and data assim-

ilation system is 1◦×1◦, with 31 model levels under
terrain-following coordinate and 17 pressure levels, re-

spectively. The background fields for the data assim-

ilation system come from 12-h forecasts of the opera-

tional T213, and the analysis assimilated with TEMP,

SYNOP, SHIP, and AIR data is used as initial values

for the global forecast model, to make 96-h forecast as

control forecast of ensemble forecast. After the addi-

tion of stochastic perturbations into the control vari-

ables of 3DVAR data assimilation system, a set of raw

initial perturbations with dynamical and physical con-

strains are obtained at the start time of ensemble fore-

cast. These initial perturbations are used in Eq. (5) to

calculate transform matrix, and the inflation factor is

solved by Eq. (8). Finally, the update ensemble anal-

ysis perturbations for the next time are obtained from

Eq. (7). The sum of analysis perturbations and con-

trol forecasts become the model initial values for each

ensemble forecast member to make a set of 96-h ensem-

ble forecast. Subsequently, the new ETKF ensemble

analysis perturbations, which are generated from 12-h

forecast of all ensemble members, are combined with

the control forecast to construct the initial perturba-

tions. Then, the cycle of ETKF ensemble forecast is

carried out, with a time interval of 12 h and an en-

semble forecast time 96 h. In our ensemble forecast

experiments, the ensemble members consist of control

forecast and 13 ensemble perturbations, i.e., 14 en-

semble members. The time periods are from 2 July to

30 October 2006, with startup time at 0000 and 1200

UTC each day. The value of parameters is usually un-

stable in the initial periods of forecast cycle, due to

the incomplete harmony of the raw initial perturba-

tions generated by 3DVAR data assimilation system

and initial perturbations constructed by ETKF. After

3 to 4 days of auto adjustment, α will oscillate around

the value of 1 and the ensemble initial perturbations

tend to be reasonable and stable. To remove the in-

fluence of perturbation adjustment during the initial

periods, the following sections are devoted to study the

52-day ensemble forecast results from 10 July 2006.

4. Analysis of ensemble initial perturbation

The quality of initial perturbations directly af-

fects the skill of ensemble forecast. Whether initial

perturbations are capable of precisely reflecting the

main characteristic modes and proper amplitude of

analysis error variance is one of the key criterions

for the effectiveness of initial perturbation scheme. A

good initial perturbation method can capture the in-

creasing possible analysis errors, meanwhile, each ini-

tial perturbation can maintain appropriate spread in

forecast valid time, and then these ensemble forecasts

can more accurately represent the actual atmospheric

state.

4.1 The influence of observation to ensemble

network density

One of the main features of ETKF initial pertur-

bation scheme is that ensemble variance can exactly

reflect the impact of variations of observational density

on analysis error variance and forecast error variance

when the ensemble member is large enough. Thus,

to measure this influence of observations to ensemble

variance, we will investigate the total energy of en-

semble variance pointed out by Palmer et al. (1998).

This method is considered most suitable for weather

forecast and data assimilation. For one perturbation,

one defines the total energy from wind and tempera-

ture using
1

2
[u

′
2(i, j, k) + v

′
2(i, j, k)] +

cp
Tr
T

′
2(i, j, k),

where u′, v′, T ′ are perturbations of the wind
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components and temperature, respectively; cp is the

specific heat at constant pressure for dry air; Tr is the

reference temperature; and i, j, k are indices for the

horizontal and vertical directions in grid space (Wei

and Toth, 2003: Wang and Bishop, 2003). First, the

total energy of each perturbation member in each ver-

tical level is computed, and then the total energy is

averaged for all vertical levels and all ensemble mem-

bers. Figure 2 shows the global distribution of energy

spread of ETKF ensemble analysis perturbations av-

eraged vertically. From Fig. 2, it can be seen that

the perturbation amplitude of the total energy spread

of analysis perturbations in the Northern Hemisphere

is relatively large, whereas the Southern Hemisphere

represents approximately zonal distribution. The to-

tal energy spread between 30◦N and 30◦S is the lowest

in the tropics, which implies that the forecast error

growth is small in these areas over 12-h intervals. The

well consistency between the total energy spread and

the observational distribution (Fig. 1) indicates that

ETKF initial ensemble perturbation scheme can ad-

just ensemble variance properly through factors based

on observational density so that initial perturbation

variance can precisely reflect the features of analysis

error variance. As mentioned in the introduction, the

rescaling factor of BGM scheme is an empirical statis-

tical value obtained from climatic data, which means

that it can only implicate the average state of analysis

error variance over a long time without the influence

of observations. The corresponding ensemble analysis

perturbations, therefore, can hardly precisely suggest

the attributes of analysis error variance. On the other

hand, ETKF ensemble can absorb almost all the infor-

mation contained in the observations spatial distribu-

tions, then adjust the effect observations on ensemble

analysis error variance, and further improve the qual-

ity of ensemble initial perturbations.

Figure 3 shows the variation of total energy

spread and ratio of the analysis (solid line) and 12-h

forecast (dashed line) perturbations with the change

in latitude (Fig. 3a) and height (Fig. 3b). Figure

3a indicates that the total energy spread is smaller in

the tropical area where baroclinic instability is relative

low, while the spread is larger in the middle and high

latitude in the Northern and Southern Hemispheres.

The difference between forecast and analysis pertur-

bations spread at about 60◦N or 60◦S is apparently

larger than that in the lower latitude. This is consis-

tent with the horizontal distributions in Fig. 2. In or-

der to analyze the vertical distribution of total energy

spread, the averaged total energy at all grids in each

vertical level is calculated. Figure 3b gives the total

energy spread of the analysis (solid line) and forecast

(dashed line) ensemble perturbations, as well as the

Fig. 2. Vertically averaged global distribution of energy spread (unit: J kg−1) of analysis perturbations.
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Fig. 3. Energy spread (unit: J kg−1) distributions of ensemble perturbations (solid: analysis; dashed: forecast) and

the ratio of analysis/forecast perturbations (dotted line). All the values are averaged over 52 days with (a) vertical

distribution as function of pressure and (b) distribution by latitude.

vertical distributions of the ratio (dotted line) of

the analysis and 12-h forecast perturbations, namely

rescaling factor. Obviously, the total energy spread of

analysis and forecast perturbations between 500 and

200 hPa are larger, similar to the results of Wei et

al. (2006), whereas it decreases from lower level to

higher level until 850 hPa and the differences between

them are much larger. The averaged rescaling factor

(dotted line) is almost the same except slightly smaller

value below 850 hPa in Fig. 3b. This maybe due to

the configuration of surface layer in GRAPES model,

which needs further investigation. The ETKF initial

perturbations scheme uses an inflation factor that is

interrelated to innovation in data assimilation to ad-

just the analysis perturbations at each time so that

appropriate spread of the initial ensemble perturba-

tions could be kept all the time.

4.2 The variance distribution of ensemble

perturbations

Figure 4 shows the time-averaged eigenvalue dis-

tribution of analysis (Fig. 4a) and 12-h forecast (Fig.

4b) perturbations of 14 ensemble members along dif-

ferent eigen-directions of the covariance matrices in

the normalized observational space. For forecast and

analysis error covariance matrices, each eigenvalue

represents the time-averaged ensemble variance. Of

the 14 initial ensemble members, though centralized

about control forecast, only 13 are orthogonal and lin-

early uncorrelated to each other. As shown in Fig. 4a,

the 13 eigenvalues of analysis perturbations are almost

the same, while the value of first rank for the 12-h

forecast perturbations reaches 30936, and the mini-

mum value is 14292. Obviously, the eigenvalue spec-

trum of analysis perturbations is much more evenly

distributed than that of 12-h forecast perturbations.

From Eqs. (5) and (6), the forecast perturbations are

first rotated by matrix C, then adjusted by diago-

nal matrix (Γ + I)−1/2, and finally rotated by C
T

to get the transformed analysis perturbations. The

transform matrix in Eq. (5) is solved through error

update Eq. (3), derived from optimal data assimila-

tion scheme that has filtering functions. Hence, along

eigen-directions in normalized observational space the

eigenvalue spectrum of analysis error covariance ma-

trix is more evenly distributed than that of forecast

error covariance, which indicates that ETKF ensem-

ble can equally distribute error variance into all eigen-

directions in the ensemble subspaces, so as to incorpo-

rate more ensemble forecast error variance along all
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Fig. 4. The time-averaged eigenvalue distributions along different eigen-directions of covariance matrices in the nor-

malized observational space. (a) Analysis and (b) 12-h forecast.

orthogonal eigen-directions in the subspaces. Conse-

quently, this is an important feature that makes the

ETKF scheme much better than other initial pertur-

bation schemes.

4.3 The growth of ensemble perturbations

For linearly dynamic propagating forecast errors,

the linear combination of the ensemble initial pertur-

bations can represent the initial structures of the main

eigenvector of the forecast error covariance. For ac-

tual nonlinear dynamic forecast system, the ensemble

forecast can also identify large forecast errors brought

by the rapid growth analysis errors. The appropriate

growth of ensemble perturbations not only indicates

that the initial perturbation scheme has the ability of

capturing the main modes of analysis perturbation er-

ror variance, but also can affect the ensemble spread.

Therefore, the growth of ensemble perturbations is an

important aspect which can reflect the attributes of

ensemble initial perturbations. Palmer et al. (1998)

pointed out that the growth of SVs of total energy

modes in the ensemble space can reflect approximately

the growth characteristics of forecast error variance.

Following the method employed by Bishop and Toth

(1999) and Wang and Bishop (2003), we compute the

maximal growth of total energy for 96-h forecast lead

times in the GRAPES ensemble subspaces, as well

as the energy growth averaged over all perturbations.

The fastest energy growth is the mean value of the

maximal energy growth over 52 days, while the mean

energy growth is calculated by the growth of all growth

modes in ensemble subspace.

The fastest energy growth and mean energy

growth as a function of forecast lead time in the whole

experiment period (Fig. 5) show that the fastest en-

ergy growth of global average ensemble perturbations

(solid line) has an evident growing tendency in the

forecast lead time (Fig. 5a). The growing range is rela-

tively smaller before 24 h, but growth increases clearly

after 24 h, suggesting that the ETKF initial perturba-

tion scheme for GRAPES global forecast model has

a ability to capture the normal norms of the rapidly

growing analysis error. Hence, this scheme is capa-

ble of reflecting the growth features of forecast error,

and keeps the appropriate spread of ensemble forecast.

As for different regions, the growth in the Northern

Hemisphere (dashed line) is quite similar to that in

the Southern Hemisphere (dashed-dot line) before 24 h

while the largest energy growth after 24 h in the North-

ern Hemisphere tends to be below that of global, which

is the opposite to the Southern Hemisphere. Litera-

ture review (Wang and Bishop, 2003) shows that for

global ensemble prediction, the ensemble perturbation

growth is more sensitive to the amplitude of initial per-

turbation, and is decreasing with the increase of initial

perturbations. The lack of observations in the South-

ern Hemisphere (Fig. 1), which induces the small ini-

tial perturbations as a whole, is one possible reason to

cause the difference in the fastest energy growth in the

Southern and Northern Hemisphere. Figure 5b shows

the average total energy norm growth of 14 perturba-

tions. In general, it reflects the growth characteristics
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Fig. 5. The total energy norm growth in ensemble subspace as a function of lead time. (a) The fastest growth, (b)

the average total energy norm growth from 14 perturbations. Solid, dashed, and dashed-dot lines denote the global,

Northern and Southern Hemispheres, respectively.

of ensemble perturbations. The whole tendency of the

average energy norm growth is almost identical to the

fastest growth, which approximately maintained the

ensemble spread in forecast lead time. The ETKF

scheme can not only precisely capture the analysis er-

ror normal modes that grow rapidly and make initial

perturbations increase in an appropriate way in the

ensemble subspace, but also keep the ensemble spread

in a suitable range. Note that the energy growth men-

tioned above is calculated under the assumption that

forecast error is linearly increasing. Generally, the lin-

ear relation is maintained for about 2 days. Thus,

the one after 48-h forecast time in Fig. 5 is only an

approximation of the total energy growth.

4.4 Correlation analysis of ensemble perturba-

tions and forecast error

Traditional statistical verification of the qual-

ity of ensemble forecast is confined to the ensem-

ble initial scheme, the forecast model, and assimila-

tion scheme. The perturbations and errors correlation

analysis (PECA; Wei and Toth, 2003) seems to be

more suitable for evaluating the performance of ini-

tial perturbations of ensemble forecast. It measures

the quality of the initial perturbations through en-

semble perturbations interpreting forecast error vari-

ance and directly compares the ensemble perturba-

tions with forecast errors reducing the effect of initial

error caused by analysis quality. On average, the more

correlative the ensemble perturbations and forecast er-

ror, the more realistic the ensemble perturbations will

depict the state of the real atmosphere. The value of

PECA is the ensemble average of the correlation coef-

ficients of ensemble perturbations and forecast error.

Here, the forecast error is the difference of the control

forecast and the analysis.

For the ensemble perturbations and correspond-

ing forecast error from 14 members, the average PECA

values is computed at different times and over differ-

ent areas (Fig. 6). The PECA value in the Northern

Hemisphere (short dashed line) is larger than that of

the global (solid line) and the Southern Hemisphere

(long dashed line) in 48-h forecast time, while the

PECA value in the Southern Hemisphere is much

lower, especially evident before 24 h. This implies

that GRAPES ensemble members generated by ETKF

initial perturbation scheme have better quality in the

Northern Hemisphere than in the Southern Hemi-

sphere, and this is due to the scarcity of observations

and the relative worse quality of the observations in
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Fig. 6. The PECA values averaged over 52 days for ETKF

ensembles from 14 perturbations as a function of lead time.

The solid line denotes global area, and the short and long

dashed lines represent the Northern and Southern Hemi-

sphere, respectively.

the Southern Hemisphere influencing the performance

of initial perturbations to some extent. In the 96-h

forecast time, the values of PECA in the Northern

Hemisphere have little variation, while it fluctuates

greatly in the Southern Hemisphere but with a grad-

ually increasing trend. The global PECA value starts

lower due to the influence of the Southern Hemisphere.

Subsequently, it increases gradually with the increase

of forecast time. The above analysis shows that

GRAPES global ensemble perturbations constructed

by ETKF scheme can basically simulate the real state

distributions of atmosphere in 96-h forecast time.

5. Quality verifications of ensemble forecast

5.1 A case study on subtropical high

In order to further verify the qualities of the en-

semble forecast, we utilize simulated observations to

make 96-h ensemble forecast for subtropical high at

0000 UTC 22 July 2006, with the same configurations

as in the experiments. Figure 7 shows the 5880-gpm

contour line with lead time of 72 h at 500 hPa for the

14 ensemble members, with time interval of 12 h. From

Fig. 7, it can be seen that the ensemble mean at each

forecast time, in general, is better than a single control

forecast relative to real atmosphere, especially in the

forecast of the westward and northward position of the

subtropical high ridge. Although there is still a cer-

tain difference between the simple ensemble averages

and real atmosphere, it is some members more accu-

rately predict the position and the moving tendency of

the subtropical high ridge. The ensemble mean after

36-h forecast time tends to show greater advantages

than the single control forecast. Thus, ETKF ensem-

ble forecasts can effectively describe the probability

distributions of the forecast to real atmospheric state.

The initial forecast (0 h) has a reasonable ensemble

spread and the ensemble mean is much closer to the

real atmosphere. Furthermore, the ensemble mean of

initial forecast is fairly uniform with contour line of

control forecast, which indicates the efficiency of the

spherical simplex centering scheme. With the exten-

sion of the leading time, the differences between en-

semble members gradually tend to increase, especially

in the unstable areas of weather system. However, the

differences do not spread disorderly, and the growth of

forecast error of ensemble members is also controlled

within a reasonable scope. While the ensemble spread,

which is too large by 96 h (not shown), is beyond the

reasonable range of ensemble forecast, and makes the

forecast meaningless. This may attribute to the qual-

ity of initial perturbations of ensemble members. The

performance of forecast model and the initial values of

the model are some other causes.

For the ETKF-based GRAPES global ensemble

prediction system (GEPS), as shown in Fig. 7, the

growth of forecast error is reasonable, which indicates

that initial perturbations can capture the rapidly in-

creasing analysis error modes, and the 14 perturba-

tions can basically reflect the uncertainty of real at-

mosphere state in the forecast.

5.2 Statistical test of abnormal correlation for

global height at 500 hPa

Figure 8 shows averaged abnormal correlation co-

efficient (ACC) of 500-hPa height over 52 days for the

Northern Hemisphere. The solid line denotes averaged

ensemble forecast and the dashed line denotes the con-

trol forecast. The skill of ensemble average is better

than that of the single control forecast from the verifi-

cations of ACC at 500-hPa height in the 96-h forecast

time, and shows increasing trend with the extension

of the forecast time. Although the numerical improve-

ment of this forecast skill is not quite apparent
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(one of the main reasons for the forecast quality is

that the ensemble number is comparatively less), it

has preliminarily shown the advantages owned by the

ensemble forecast. Thus, this shows that the GRAPES

global ensemble prediction has some practical predic-

tion effect; the ETKF initial perturbations is able to

Fig. 7. 500-hPa 5880-gpm specified line for the ensemble forecast over 72-h lead time from 0000 UTC 22 July 2006.

The thick-black solid lines denote the real fields, the thick-black dashed lines for the ensemble mean, and the thick-blue

solid lines for the control forecast. The thin-color solid lines denote the ensemble members, respectively.
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Fig. 8. Averaged abnormal correlation coefficient at

500 hPa over the 52 days for the Northern Hemisphere.

The solid line denotes averaged ensemble forecast, and the

dashed line denotes the control forecast.

describe the structure characteristics of analysis error

at initial time and maintain a reasonable growth of

forecast perturbations.

6. Summary and discussions

Based on ETKF initial perturbation method, this

paper adopts the way of simulated observations, in-

troduces the spherical simplex centering scheme that

is relatively simple and effective, and the initial per-

turbations scheme is developed for GRAPES global

ensemble prediction system. The experimental results

show that the GRAPES ensemble initial perturbations

are able to reflect the distributions of the main nor-

mal modes of analysis error variance in the Northern

Hemisphere, and maintain the appropriate initial and

forecast spread with the reasonable perturbation am-

plitude in 96-h forecast time. In the Southern Hemi-

sphere, the perturbation effect is slight worse because

of the scarcity of observations. As a whole, the growth

of perturbation basically consistent with that of fore-

cast error, and the ensemble variance is able to explain

accurately more variance of forecast error. Thus, the

ensemble forecast members can describe reasonably

the developing state of the real atmosphere. The ex-

periments carried on 14 ensemble members show that

GRAPES global ensemble prediction system based on

the ETKF initial perturbation scheme has develop-

ment potential and application value.

In this paper, we carry out the experiments of

GRAPES global ensemble prediction using relatively

few ensemble perturbations. As known, the ensem-

ble member has direct influence on initial perturba-

tions. Due to the limited number of ensemble mem-

ber, the transformed matrix in the ensemble subspace

cannot completely reflect the characteristic mode dis-

tributions of analysis error, thus restricting the per-

formance of ETKF scheme. The use of more ensemble

members should be able to fully reflect the advantages

owned by ETKF initial perturbation scheme.

REFERENCES

Bishop, C. H., and Z. Toth, 1999: Ensemble transforma-

tion and adaptive observations. J. Atmos. Sci., 56,

1748–1765.

—–, B. J. Etherton, and S. J. Majumdar, 2001: Adap-

tive sampling with the ensemble transform Kalman

filter. Part I: Theoretical aspects. Mon. Wea. Rev.,

129, 420–436.

—–, C. A. Reynolds, and M. K. Tippett, 2003: Opti-

mization of the fixed global observing network in a

simple model. J. Atmos. Sci., 60, 1471–1489.

Buizza, R., and T. N. Palmer, 1995: The singular-vector

structure of the atmospheric global circulation. J.

Atmos. Sci., 52, 1434–1456.

—–, P. L. Houtekamer, Z. Toth, et al., 2005: Acom-

parison of the ECMWF,MSC and NCEP global

ensemble prediction systems. Mon. Wea. Rev.,

133, 1076–1097.

Chen Jing, Xue Jishan, and Yan Hong, 2003: The un-

certainty of mesoscale numerical prediction of South

China heavy rain and the ensemble simulations.

Acta Meteor. Sinica, 61, 432–446. (in Chinese)

—– and Yan Hong, 2005: A new initial perturbation

method of ensemble mesoscale heavy rain predic-

tion. Chinese J. Atmos. Sci., 29, 717–726. (in

Chinese)

Daley, R., 1991: Atmospheric Data Analysis. Cambridge

University Press, 457 pp.

Fan Xingang, 1999: A global study on ensemble predic-

tion method. Acta Meteor. Sinica, 57, 74–83. (in

Chinese)

Hamill, T. M., C. Snyder, and R. E. Morss, 2000: A com-

parison of probabilistic forecasts from bred, singular

vector, and perturbed observation ensembles. Mon.

Wea. Rev., 128, 1835–1851.

Hoffman, R. N., and E. Kalnay, 1983: Lagged average

forecasting, an alternative to Monte Carlo forecast-

ing. Tellus, 35A, 100–118.



574 ACTA METEOROLOGICA SINICA VOL.23

Hollingsworth, A., 1980: An experiment in Monte Carlo

forecasting procedure. ECMWF Workshop on sto-

chastic dynamic forecasting, ECMWF.

Houtekamer, P. L., L. Lefaivre, J. Derome, et al., 1996: A

system simulation approach to ensemble prediction.

Mon. Wea. Rev., 124, 1225–1242.

—–, and H. L. Mitchell, 1998: Data assimilation using

an ensemble Kalman filter technique. Mon. Wea.

Rev., 126, 796–811.

Leith, C. E., 1974: Theoretical skill of Monte Carlo fore-

casts. Mon. Wea. Rev., 102, 409–418.

Li Zechun and Chen Dehui, 2002: The development and

application of the operational ensemble prediction

system at national meteorological center. Journal

of Applied Meteorological Science, 13(1), 1–15. (in

Chinese)

Molteni, F., R. Buizza, T. N. Palmer, et al., 1996: The

ECMWF ensemble prediction system: Methodology

and validation. Quart. J. Roy. Meteor. Soc., 122,

73–119.

Palmer, T. N., R. Gelaro, J. Barkmeijer, et al., 1998: Sin-

gular vectors, metrics, and adaptive observations. J.

Atmos. Sci., 55, 633–653.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at

NMC: The generation of perturbations. Bull. Amer.

Meteor. Soc., 74, 2317–2330.

—–, and —–, 1997: Ensemble forecasting at NCEP and

the breeding method. Mon. Wea. Rev., 125, 3297–

3319.

Wang, X., and C. H. Bishop, 2003: A comparison of

breeding and ensemble transform Kalman filter en-

semble forecast schemes. J. Atmos. Sci., 60, 1140–

1158.

Wei, M., and Z. Toth, 2003: A new measure of ensemble

performance: perturbations versus error correlation

analysis (PECA).Mon. Wea. Rev., 131, 1549–1565.

—–, —–, and R. Wobus, 2006: Ensemble transform

Kalman filter-based ensemble perturbations in an

operational global prediction system at NCEP. Tel-

lus, 58A, 28–44.

Yang Xuesheng, Chen Dehui, and Leng Tingbo, 2002:

The comparison experiments of SV and LAF initial

perturbation techniques used at the NMC ensemble

prediction system. Journal of Applied Meteorologi-

cal Science, 13(1), 62–66. (in Chinese)

Zhong Ke and Wang Hanjie, 2004: The physical ensemble

technique of the regional climate simulation. Acta

Meteor. Sinica, 62, 776–781. (in Chinese)


