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ABSTRACT

A simple quasi-geostrophic barotropic vorticity equation model is used as the dynamic frame of the
model in this paper. Considering that there are many random errors in model’s initial values of meteorolo-
gical data, and that it is not perfectly complete about model’s physical processes (for example, take no ac-
count of the interaction between atmosphere and underlying surface, radiation, etc.), we add the random for-
ced term to the model and use the Monte-Carlo method with random initial values. A statistical-dynamic
integrated model is thus built up, and a numerical forecasting experiment of 500hPa monthly mean height field
of January 1983 has been carried out. The experiment result proves that the forecasting result of the model,
conzidering random forcing and random initial values at the same time, is better than thar by the pure dynamic
model, the random initial value model and the random forced model.
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I. INTRODUCTION

In the 1940s and 1930s, Blinova et al. (Dobylishman, 1959) worked out a series of long-
range numerical forecasting and experiment studies using simple linear and nonlinear models.
Although the numerical forecasts at that time had a long way to go for the operational demand,
they gave many valuable resulis.  For example, it pointed out that the forecasting results cal-
culated by using mean states were better than by using instantaneous states. Afterwards, in
about twenty years, there was a little progress in long-range numerical forecasting. From the
1970s, with increasing understanding of the process of ocean-atmosphere interaction and the
undeterminism of the atmosphere movement, there raised hope of doing long-range weather
forecasting with numerical methods. The study of long-range numerical forecasting entered
a flourishing period, and statistical-dynamic integrated methods were even more spectacular.

It was recognized that a more exact portrayal of the rule of atmospheric movement could
be made by recognizing the duality of both undeterministic and deterministic features (Lorenz,
1963). In order to describe the twofold nature of the atmospheric movement, meteorologists
used statistical-dynamic integrated ways. Epstein (1969) advanced a moment approach which
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can predict the probability distribution of every atmospheric movement variable. In this me-
thod, the dependent variables are various step-moments of the atmospheric movement variables.
If the equations are nonlinear, the variation of the low step-moments is related to high step
moments. Thus the equations can be closed, and the high step moments must be truncated.
As a result, errors are brought into forecasts.  Subsequently, there were many studies intend-
ing to reduce these errois caused by truncation of high step moments. The real case simula-
tion proved that this method is of positive significance for improving simulation results. How-
ever, this method is very complicated, the amount of calculation is very large, and the errors
brought by truncation of high step moments of nonlinear equations could not be overcome.
In addition, the solution is generally very difficult to find out except that very simple models
are adopted. Therefore, it is impossible to be further developed and used in the operation.
In order to overcome the difficulty in the moment method, Leith (1974) put forward a statisti-
cal-dynamic integrated Monte-Carlo approximate forecasting approach, and also pointed out
through simulation that it could significantly reduce the amount of calculation since the ensem-
ble forecast is sufficient when using eight individual forecasts. 1In the same paper, Leith used
a two-dimensional model of homogeneous and isotropic turbulence to prove that the ensemble
forecast is the optimium forecast in the sense of the least square. This work laid a foundation
for the further development of this approach. Scidman (1981) presented an averaging tech-
nique for random perturbation initial values to make long-range numerical weather forecasts.
The main points of this method arc: first, putting various random perturbations in the obser-
ved initial states and giving a series of perturbation initial states; second, using these perturba-
tion initial states to make forecasts respectively through a dynamic model. The forecast need-
ed is the ensemble of all these individual forecasts.  The effect of this ensemble forecast te-
chnique on the predictability was investigated through the simulation study of a 3-layer general
circulation model. It was found that the averaging forccast techaiques could increase the pic-
dictable time, when comparing with the individual forecasts or climate mean.  After that,
many people used the Monte-Carlo approach to do experiments cf forzcast study, and the re-
sults were satisfactory (ECMWE, 1980).

Many achievements have been made in the response study of the atmosphere to forced
sources (such as topography, heat sources and sinks). Pitcher (1977), by use of a statistical-
dynamic way, studied the matter of putting forced term in the spectral forecast equation, and
pointed out that the increased errors (external errors), caused by simplifying the model, must
be precisely considered. In order to simulate these error sources, a random forced term was
put into every spectral equation, and this was used as a parameterization of the increased errors.
The experiment results were satisfactory.

In this paper, based on the work of random initial vaiue model and random forced model
(Huet al., 1990; Zhang et al., 1990), the random forced term is put into the model and random
initial value is used at the same time. In this way w2 have done a numerical forecasting experi-
ment of 500hPa monthly mean height field of January 1983, and the results obtained are com-
pared with those by some other moedels. This work proves that the forecasting result of the
model simultaneously con:idering random forcing and random initial values is an optimum
forecast. The dynamic framez of cur model Is a quasi-geostrophic barotropic vorticity equa-
tion (Hu et al., 1990). In this paper, we will first directly describe the statistic part of the model,
then give the result of numerical experiment and make the comparison with the results by some
other models.
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1. A MODEL OF INTEGRATED RANDOM INITIAL VALUES AND RANDOM FORCING
1. Gereration of Random Initial Values

The generation of random initial values is the key to the random initial value simulation
experiment. It is assumed thut the observational value is taken to be point A in the phase
space. It is thus demanded that all the generated initial values are around point A and cons-
titute a point collection in the phase space which obeys normal distribution (Fig. 1). But
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Fig. 1. Sketch figure of possible distribution (p) of all the initial values, observations A and B are points in
the phase space.

the real initial state may be point B. The random initial value can be formed by superposing
various perturbation values on the observational value. The specific method of generating
random initizl values is as follows: Assume that 4AK % (f,) represents the observational
value at time ¢,, and that randem initial value is

AR (b)) = AAK I (£e) F0 - hs (1)
where ¢ is the mcan square deviation of errors, p is a peseudorandom number which
obeys the distribution of N (0,1), m is zonal wavenumber, and (n—m) is meridional
wavenumber. Now the problem of gencrating the initial values becomes the pioblem of
how to generate ¢ and yu.

(1) Generation of the inean square deviation of random: crrors

The errors in the meieorological data include systematic and random errors. The sys-
tematic errors are caused by the tread crrors of instruments used in satellites, and/or large-
scale data blank areas in the ocean and the Antarciic. The randoim errors are produced by
the individual measurcment of the ohservaetion system (for example, satellite observations and
routine soundings), intcrpolation of the obscrvational data into networks and some other
factors. In this paper, the system errors are assumed to be zero, namely, only the random
errors are considered. Therefore the ¢ in Eq. (I) becomes the mean square deviation of
random errors. Since in practical obscivaticns, there is only one observational value at a
certain point and time, it is impossible to objectively and accurately decide the mean square
deviation of random errors from the observed data. In some countries (for example, in the
Meterological Office of United Kingdom), ¢ is taken as a constant. Because anomaly data
are used in this study, we may consider that ¢ is directly proporticnal to the observed
anomalies. Thus, we can infer the specific proportion relationship through numerical experi-
ments and available data on this subject. Presently, the observation system in continents has
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a space scale of several hundred kilometers, and a routine observation frequency of twice a day.
The observational errors are usually as [ollows: temperature 1—2°C, wind speed 3—4 m/s and
pressure 3—4 hPa (Seidman. 1981). However, the range of errors becomes much bigger in
the ocean areas and areas with scarce stations. On the basis of the above analysis, together
with the analysis of numerical simulation results, we may conclude that the mean square de-
viation of random errors is taken as 109 of observed anomalies, namely.

o=AAK"(t) X10%

(2)  Generation of the pseudorandom numbers which obey the distribution of N(0.1)

There are many methods which can generate pseudorandom numbers (The Probability-
Statistical Group, 1979). 1In this paper, we use the multiplicative congruential method to ge-
nerate the pseudorandom numbers which obey the uniform-distribution. The pseudorandom
numbers generated by this method. have many advantages, such as long cycle, excellent statis-
tical characteristics, rapid generating speed, less computer memories occupied. etc. First,
the multiplicative congruential method is used to generate the pseudorandom numbers r,
which obey the uniform-distribution in an interval [0, 1], namely, positive integer x, is taken
as the initial value and another positive integer 1 as multiplier, then recurrence formula

x4 = A, (modA)
is used to generate numerical series {x,/n=12....}. Through the standardization treatment,
we get the pseudorandom numbers

Fusd :Xn+1/M’
where x,, as the initial value to produce the pseudorandom numbers, is an odd number in an
interval [0,2°']; A=5"; M =3%: and » is an ordinal number of pseudorandom number

series. Then the composite random sampling is used of normal distribution sampling. namely.
resolve the normal probability density function

__1 ( x
[G) =5 —exp(=75) (2oL +20)
into the sum of four probability density functions

FG) =X fi(x) + P X folx) + 0% f5(x) + 20X [ (x),
where the values of probability p,(i=1, 2, 3, 4) are 0.8638, 0.1107, 0.0228002039 and
0.0026997961 respectively, and p, satisfy the conditions

0<p,<1 and }:‘pizl .

Through the above sampling, we obtain the pseudorandom numbers, i.e. the g in Eq. (I).
which obeys the N (0,1) distribution. Similarly, putting various g into Eq. (1), we can get
various values of random initial values.

2. Generation of Random Forced Term

Atmospheric motion is affected by forced sources, such as oceans, mountains, snow cover,
ice caps, soil moisture, etc. It is due to the interaction between atmosphere motion and these
forced sources that a variety of motions can be produced in the earth’s atimosphere. How to
correctly consider these forced sources in the numerical forecasting model is still a problem.
In the past decades, many meteorologists carried out a series of parameterization experiments
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and yielded many achievements (Pitcher, 1977), thus laying the foundation for further under-
standing the role played by the forced sources in atmospheric motion. However, there is still
much work to do in order to concretely and accurately put these external forced sources
into the numerical forecasting model. In this paper, we put forward a new method which
considers the forced sources in combination with the historical data. In the method,
first we derive the forced time series through the forecasting equation, then we distinguish,
estimate and simulate ARMA (K,L) (ARMA : autoregressive-moving averages; sce below Eq.
(5)) statistical model of the forced time series, and get the forced term. Subsequently as ran-
dom forcing, the forced term is put into the equations and the random initial values at the
same time are used to do Monte-Carlo simulation. Finally, forecasts are obtained by the
integrated model of random initial values and random forcing.

(1) Generation of the random forced time series

In order to simulate the forced time series, we must first generate it.  Assumc the {orecas-
ting equation of the model is
dAKW () . —F() (2)
dte '

Due to a scries of simplifications in the model, which are somewhat diffcrent from the real at-
mospheric motion, when the historical data are substituted into forecasting Eq. (2), the equa-
lity generally does not hold. Assuming the remainder is f% (¢t,), then we have

fie) = AR g

dt;
Turn into difference form
fat) = AK (”:\‘f n(Fim). —Fu(t) (3)

where §=1,2,3,....31, and At=¢, —¢,_,. Based on observational data available and spectral
expansion cocfficients, Az is taken as one year. Substituting the historical data into Eq. (3),
we can obtain the forced time series

f,',l,(tl), f,:(t:)!"".’[l::(tsx) . (4)

(2) Distinguishing and estimating the random forced time scries

Having obtained the forced time serics, we distinguish and estimate the ARMA (K, L)
model:
xi—boxi—i— o —bixi—n=a,~da;_ - —dra;_r s (5)
where g, is white noise which obeys N (0,¢°). About calculation of ¢ please refer to
Xiang et al. (1986). First, examine whether the random forced time series (4) is a
stationary time series or not. If not, we assume for convenience that no forcing exists there.
The practical test proves that only 79, are non-stationary among all time series, so that this
simplified treatment can not bring about obvious errors. If it is a stationary time series, then
we calculate the value of BIC:

BIC=In(ss) +(Kp+L)IuN/N ,

where ss 15 the maximum likelihood estimate of the square deviation of the crrors in the 4 RM A
(K. L;) model, and N is series length. According to the BIC criterion, we decide which is
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the best in all the below models:

AR(1), AR(2), -, AR(5), MA(l). MAQ) and ARMA (1.1).
After the best model is found out, we estimate the parameters in the medel, so that we obtain
the basic model a certain random forced time series obeys. Repeating ali the procedures to
various (n,m), we get the best models of all the (i,m).

(3) Simulation of the random forced time serics

After the best models are Tound out, through simulation using these best models we can

get a random forced time series
g',',‘ (tl) ’ [JY: (fz) 9 79’;: (i \‘) )
where ¢ is the fength of a random forced serics obtained by the simulation. The time inter-
val of the random lorced tims series here is one year.  Hewever, the timie interva! of the random
forced time series needed for Monie-Carlo simulation is assumed as
Q’: (71) ’ Q: (Tz) LI | Q’:(tm) ’

where Av=v,—r,_, Is the time step of integration in our paner, and Ar=3 hours.
The problem arises: there are different sampling time intervals between (he random foreed time
series Q7 () which the Monte-Cuilo simufation needs and the random forced time series
g (t:) which is obtained from the historical data. Until now. the problem about how to
match two time serics with different sampling time intervals has not bzen solved theoretically.
Thus we must do a serics of parameterized trial experiments.  Ai last we decide that the forced
term is put into the equation at each step of integration only for the second ten days of a month,
and is suitably weakencd. We use g% (¢;)/4 as the random forced dme series Q7 (z,)
needed for the integration. The approximately treated random forced term is put into the
equation and the random initial values are used, then the Mente-Carlo simulation is made
through cight integration calculations. Finally, we get the forecasting cnsemble under the
influence of a series of random initial values and random forced sources. This forecasting en-
semble is the forecasting result of the model cormbining the random initial values with randem
forcing.

1. NUMERICAL FORECASTING EXPERIMENT AND COMPARISON WITH FORECASTS OF
OTHER MODELS

In order to compare the forecasts of several models. we use an exacily same difference ana-
logue, time smooth, initial data and treated method as in the previcus paners (Hu et al., 1990:
Zhang et al., 1990), and use the model for deing the same case, 500 hPa monthly mean height
anomaly field forecasting experiment of January 1983 (Fig. 2).

Comparing the analysis of Fig. 2 with the forecasts of the randen. initial value model
(Fig. 3). the random forced model (Fig. 4} . the pure dynamic medol /Fig. 5) and the actual
observations (Fig. 6) (Hu et al., 1990; Zhang et al., 1990). we can i+ that the forecasts of
the random initial value and random forced integrated model (Fiz. 2) have a marked
improvement in relation to those by other models (Figs. 3—5), especially for the forecasted
intensity of anomaly centers. and it is the best forecast of the four models. Through careful
analysis, we can find that it improves the forecast of the random initial value model. for
example, the intensily of positive anomaly centre in the northeast of China has a little
reduction, and is closer to the actual observation; and the orientation of axis of this positive
anomaly centre changes from northwest-southeast in the forecast of the random initial value
model to approximately north-south, and is closer to the actual observation.
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Fig. 2. Forecasted 500 hPa mean height anomaly field of January 1983 by the random imtial value and

10 gpm).

random forced integrated model (unit:

but by the random initial value model.

As in Fig. 2,

Fig. 3.
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Fig. 4. As in Fig. 2, but by the random forced model.

Fig. 5. As in Fig. 2, but by the pure dynamic model.
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Fig. 6. The actu.! 500 hPa mean height anomaly field of Januany 1983 (unit: 10 gpm).

In order to objectively analyzc the improvement of the several models to the pure dyna-
mic model (only the case of January 1983), we give the comparison result of a few quantitative
indexes in Table 1. From the table we can see very clearly the improvement of several models
to the pure dynamic model. From the figures in the table, we know that all the models have
some forecasting ability (by contrast with the linear correlation coefficient 0.12 of sustained
forecast), but the forecast of the pure dynamic model is the worst, and the forecast of the
random initial value and random forced integrated model is the best. This improvement is

Table 1. Comparison of Forecasting Effects of Models

- [

'\—\\ Sign [ Linear Mean
1‘\»,\ Indexes Correlation Corre'ation of Error Absolute
Models T Coeflicient ‘ Coeflicient Value E (10 gpm)
T R, R,
~.
pure dynamic model ‘ 0.71 ‘ 0.26 7.2
random forced model ‘ 0.73 0.26 6.7
random initial value model ‘ 0.75 0.33 5.1
random initial value and | 0.76 0. 40 5.0
random forced integrated mode|
sustained forecast 0.12
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mainly due to consideration of random initial values. On the contrary. when the forced term
is considered, the improved range is very little. Nevertheless, this can not declare that the
forced effect is not important. The causes for this may be relaied to only considering the in-
terannual scale random forcing in the model and being short forecasting time. For example,
if we do seasonal or fonger range forecasting, forced effects may become more clear and impor-
tant, besides this, it may be related to the method of treating forced time series (especially when
the forced time series is not stationary), which has many unsuitable points. After all, further
study of the random forced problem is needed.

1v. SUMMARY

Through the work in this paper, it is proved that the forecast effect of the random initial
value and random forced integrated model is not only markedly better than the forecast of the
pure dynamic model, but also better than the forecast of the random forced model and the ran-
dom initial value model. The comparison of the forecast cffects shows that the statistical-dy-
namic integrated method used in doing long-range weather numerical forecasts has marked
superiority over the pure dynamic method.
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