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ABSTRACT

The impacts of AMSU-A and IASI (Infrared Atmospheric Sounding Interferometer) radiances assimila-
tion on the prediction of typhoons Vicente and Saola (2012) are studied by using the ensemble transform
Kalman filter/three-dimensional variational (ETKF/3DVAR) Hybrid system for the Weather Research and
Forecasting (WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with
two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance,
respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts
of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills
are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and
temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on
average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further
increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI
radiance assimilation.
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1. Introduction

A background error covariance (BEC) matrix is
intrinsically important in determining the level of in-
fluence each observation has on the analysis and how
this influence is distributed both spatially and among
different analysis variables in data assimilation (DA).
Compared to the variational DA approaches (Lorenc,
1986; Parrish and Derber, 1992; Barker et al., 2004),
which generally use the time-invariant and nearly-
homogeneous BEC, ensemble techniques capture the
“errors of the day” that usually propagate in time
on multiple scales from short term ensemble forecasts

(e.g., Torn and Hakim, 2009; Zhang et al., 2009;
Hamill et al., 2011a). One such approach is the ensem-
ble Kalman filter (EnKF), which was first proposed
by Evensen (1994) and has been widely tested in nu-
merical weather prediction (NWP) model experiments
against real data (e.g., Dowell et al., 2004; Meng and
Zhang, 2008; Whitaker et al., 2008; Zhang et al., 2009;
Liu et al., 2012).

The hybrid ensemble/variational DA incorpo-
rates the ensemble-produced BEC within a variational
framework. Studies by Hamill and Snyder (2000),
Lorenc (2003), and Wang et al. (2007, 2008) have
demonstrated that the hybrid system has some poten-
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tial to yield the “the best of two worlds” by improving
the deterministic forecasts, due to the inclusion of the
flow-dependent BEC and the standalone EnKF with
a small ensemble size.

Recently, the hybrid system has been used to
study tropical cyclones (TCs) in global (Hamill et
al., 2011b) and regional (Wang, 2011, hereafter W11;
Li et al., 2012; Schwartz et al., 2013) modeling sys-
tems assimilating real observations. All of the above
studies found that the hybrid system produced more
statistically significant TC tracks and intensity fore-
casts than those from three-dimensional variational
(3DVAR) analyses. Among these studies, W11 re-
ported that static BEC, in particular, was poorer than
the flow-dependent BEC in observation-sparse regions.
Schwartz et al. (2013) found that the hybrid system
with the flow-dependent BEC produced comparable
track forecasts to those from 3DVAR analyses with
multiple outer loops.

Different from the above studies, which focused
on comparisons between the hybrid and the variational
systems that assimilate mainly conventional observa-
tions, this study explores the effect of satellite radi-
ance assimilation in a hybrid framework on typhoon
forecasting. Many of the operational NWP centers as-
similate radiance data with variational DA methods.
Several studies have also explored the impact of assim-
ilating radiance data for typhoon forecasting within
EnKF frameworks (Liu et al., 2012; Schwartz et al.,
2012).

The impacts of radiance data on weather fore-
casting are known to be significant, especially for ar-
eas over oceans with sparse conventional observations
(Liu et al., 2012). However, the impact of the radi-
ance data in the hybrid data assimilation system is
not clear. The purpose of this study is to explore the
impact of radiance assimilation on analyses and subse-
quent forecasts using the Weather Research and Fore-
casting model DA/ensemble transform Kalman filter
(WRFDA/ETKF) hybrid system.

In this study, we choose the ETKF (Bishop et al.,
2001) to update the ensemble perturbations, since it
is relatively computationally inexpensive to solve the
Kalman filter equations in ensemble space and they
produce skillful ensembles (W11). This work makes
use of radiance data including both microwave and

infrared radiance data in the initialization of the TC
environment. This work also differs from W11 in im-
proving the inflation and fraction formula in the ETKF
algorithm to stabilize the ETKF when estimating the
inflation factors with limited ensemble size. Moreover,
sensitivities to vertical correlation localization matri-
ces are also assessed.

The remainder of this paper is organized as fol-
lows. In Section 2, we provide a brief introduction to
the WRFDA ETKF/3DVAR hybrid system and ra-
diance assimilation methodology. An overview of ty-
phoon cases and the experimental settings are given in
Section 3. The results are presented in Section 4. Sum-
mary and future perspectives are presented in Section
5.

2. The ETKF/3DVAR hybrid system and ra-
diance data assimilation

2.1 The ETKF/3DVAR hybrid system

The ETKF/3DVAR hybrid system is a compo-
nent of the WRFDA system (Barker et al., 2012). The
hybrid analysis increment δx is defined as the sum of
two terms,

δx = δxstatic + δxflow-dep, (1)

where the first term δxstatic is the increment associ-
ated with the 3DVAR static background covariance
and the second term δxflow-dep is the increment asso-
ciated with the flow-dependent covariance given by

δxflow-dep =
N∑

k=1

αk ◦ x′
k, (2)

where N is the ensemble number, αk is the extended
control variable as defined by Lorenc (2003), and x′

k is
the kth ensemble perturbation state vector. The sym-
bol “◦” denotes the Schur product (element by element
product) of the vectors αk and x′

k. The corresponding
cost function with respect to δx and αk to obtain the
increment is

J(δx,a) =
1
2
β1(δxstatic)TB−1(δxstatic)

+
1
2
β2(a)TA−1(a) +

1
2
(Hδx − d)T

·R−1(Hδx − d), (3)
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where δx is given by Eqs. (1) and (2), a is a ve-
ctor formed by concatenating N vectors αk, and A

is a block diagonal matrix that controls the spatial
correlation of a, effectively performing localization of
the ensemble BEC. H and H are the nonlinear and
linearized observation operators, and d = y − Hδxb

is the innovation vector, where xb denotes the back-
ground and y is the observations. In the WRFDA
hybrid system, both the horizontal and vertical local-
izations in A are applied. We found that the results
were similar when we set the horizontal localization
radius to 500, 750, and 1000 km for the experiments
in this study. The results in the following sections are
based on 750-km horizontal localization radius. The
vertical localization was implemented through trans-
forming the extended control variable with empirical
orthogonal functions (EOFs; Li et al., 2012; Wang et
al., 2014). The default vertical correlation c between
two levels (l1 and l2) in released WRFDA is defined as

c(l1, l2) = exp(− (l1 − l2)2

(10
l1
M

)2
), (4)

where M is the total model level number. The lo-
calization radius

10l1
M

is proportional to the model
level index, indicating that the localization radii for
the lower levels were much smaller than those of the
higher levels. For radiance observations, a more ad-
vanced correlation method is

c(l1, l2) = exp
(
− (z(l1) − z(l2))2

r2

)
, (5)

in which a distance r is directly chosen as the local-
ization radius to fully spread the observation infor-
mation over the whole model space, even for the low
levels, where z(l) is the height of the model level l. For
radiance assimilation, we conducted sensitivity exper-
iments on vertical localization using Eqs. (4) and (5)
with 4- and 8-km localization radii, respectively. The
results were not sensitive to the vertical localization
schemes (figure omitted). Thus, we determined an 8-
km radius for the hybrid model to conduct further
comparisons with 3DVAR in the following sections.

The weights of the static covariance and flow-
dependent covariance were determined by factors β1

and β2, with the constraint
1
β1

+
1
β2

= 1. For the ex-

periments in this study, we set
1
β2

= 0.5. We weighted

the BEC 50% toward the ensemble contribution, al-
though we achieved similar results using 75% and 25%.

In this study, ETKF was used to update the en-
semble, estimating forecast error from the covariance
matrix of the ensemble forecast perturbations (Bishop
et al., 2001). ETKF was described by Wang et al.
(2007) as

Xa = XbTΠ, (6)

where the ETKF transforms the matrix of forecast
perturbations Xb into a matrix of analysis pertur-
bations Xa, whose columns contain N analysis per-
turbations xe

k by a transformation matrix T with the
inflation factor Π. T is chosen to ensure the output
ensemble error covariance to precisely equal the true
analysis error covariance. The solution of T is given
by

T = C(ρcΓ + I)−1/2CT, (7)

where C contains the eigenvectors and Γ the eigen-
values of the N × N matrix (Xb)THTR−1HXb, I

is the identity matrix, and ρc is the fraction factor
accounting for the projection of the forecast error in
ensemble space. For an ensemble size N of 100 or
less, the computational cost of Eq. (7) is relatively
low. An enhanced inflation and eigenvector dependent
fraction factor scheme (Xu et al., 2013b) was employed
to increase the ensemble covariance to ameliorate the
underestimation of the analysis-error variance. This
scheme is given by

T = C(pΓ + I)−1/2CT, (8)

where the component of the vector p =
(ρ(1), ρ(2), · · · , ρ(N)) is the fraction factor for each
eigenvector of the ensemble covariance matrix. Equa-
tion (8) is a refined form of Eq. (7). The fraction fac-
tors correct the inflation in proportion to the forecast
error variance projected onto a particular kth eigen-
vector. The adaptive fraction algorithm here aims
to ameliorate the problem by distinguishing between
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large and small background forecast errors, explained
by the different ensemble eigenvectors, instead of using
a constant fraction factor to rescale all the eigenval-
ues. In this study, observations used in ETKF when
calculating the transformation matrix were the same
as those in the hybrid system, filtered by strict quality
control, and only radiosonde measurements were used
in estimating the inflation factor.

The procedure for the cycling ETKF/3DVAR hy-
brid system includes six stages as follows.

(1) Generating the initial ensemble (20 members
in this study) by adding the NCEP Global Forecast
System (GFS) analysis and correlated random per-
turbations following Torn et al. (2006) and Wang
et al. (2008), before re-centering the ensemble with
the GFS analysis; (2) obtaining short-term ensemble
forecasts from the initial ensemble in step (1); (3)
calculating the ensemble mean and perturbations; (4)
updating the ensemble mean and perturbations with
the 3DVAR and ETKF, respectively; (5) obtaining
an analysis ensemble by adding the updated ensemble
mean and perturbations; and (6) updating the lat-
eral boundary conditions and lower boundaries before
conducting short-term ensemble forecasts to the next
assimilation time or run a deterministic forecast to
diagnose outputs from the analysis ensemble mean,
and repeat from step (3).

2.2 Radiance assimilation procedures

The community radiative transfer model (Han et
al., 2006; Liu and Weng, 2006) was used as the ob-
servation operator H in WRFDA for computing ra-
diances from the model profiles of temperature and
moisture (Barker et al., 2012). A radiance observation
was rejected if the bias-corrected innovation (observa-
tion minus prior) exceeded either 15 K or 3σ0, where
σ0 is the specified observation error standard devia-
tion for brightness temperature. Radiance data over
mixed surfaces (e.g., over coastal areas) and observa-
tions with large scan angles (the first two pixels for
AMSU-A radiances and the first four pixels for IASI
radiances on the edge) were rejected. In these experi-
ments, radiance data were used with a 90-km thinning
mesh. Data within ±2 h of the analysis times were

used and assumed to be valid at the analysis times.
For the IASI infrared radiance data, the algorithm de-
veloped by McNally and Watts (2003) was used for
cloud detection (Xu et al., 2013a).

The systematic errors for radiance observations
were corrected by modifying the observation operator
H as follows:

HBIAS(x, γ) = H(x) + γ0 +
Ip∑

i=0

γipi(x), (9)

where γ0 is the constant component of total bias, Ip

the number of the potentially state-dependent pre-
dictors, and pi the predictors (the scan position, the
square and cube of the scan position, the 1000–300-
and 200–50-hPa layer thicknesses, surface skin tem-
perature, and total column water vapor) and their co-
efficients γi (Liu et al., 2012). The coefficients were up-
dated by a variational minimization process by includ-
ing them as control variables (Derber and Wu, 1998;
Auligné et al., 2007; Dee and Uppala, 2009).

3. Overview of cases and experimental design

To evaluate the impact of radiance data assim-
ilation in the WRFDA ETKF/3DVAR hybrid sys-
tem with flow-dependent background error, analy-
sis/forecast experiments with radiance assimilation are
performed over the period from 18 July to 1 August
2012, during which time typhoons Vicente and Saola
formed (Fig. 1).

3.1 Vicente and Saola (2012)

Typhoon Vicente was one of the most powerful
storms to strike southern China in recent years, caus-
ing major damage to life and property. Vicente began
as a tropical depression on 18 July 2012, northeast of
the Philippines. Vicente steadily moved into the South
China Sea, and gradually strengthened throughout 23
July, at which point it changed course towards Guang-
dong Province. Later on the same day, Vicente made
landfall over Taishan, Guangdong.

Typhoon Saola was a tropical cyclone that af-
fected the Philippines and China (including the Tai-
wan region). On 26 July, a tropical depression deve-
loped about 1000 km to the southeast of Manila. On
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Fig. 1. The WRF model domain and the 6-h tracks of Typhoon Vicente (black typhoon symbols) from 0000 UTC 20

to 0000 UTC 25 July, and Typhoon Saola (red circles) from 1800 UTC 29 July to 0600 UTC 3 August. The snapshot

of AMSU-A (orange dots from NOAA-18) and IASI (green dots from MetOp-A) radiance observations available within

the assimilation window time of the first analysis time are denoted valid at (a) 0600 UTC 18 and (b) 0000 UTC 19 July

2012, respectively.

28 July, it was upgraded to a tropical storm, and to
a category-1 typhoon on 30 July. It was soon down-
graded to a tropical storm late on 30 July. On 31 July,
Saola developed again into a category-1 typhoon, and
then to a category-2 typhoon early the next day. Ty-
phoon Saola made landfall over Taiwan at 1920 UTC
1 August. On 2 August, Saola was downgraded to a
tropical storm and made landfall again over Fujian at
2250 UTC.

3.2 Experimental design

3.2.1 WRF model
The WRF model (version 3.5; Skamarock et al.,

2008) is employed in all forecast experiments. The
following physical schemes are used: the WRF single-
moment 5-class microphysics scheme (Hong et al.,
2004); the Goddard shortwave (Chou and Suarez,
1994) and rapid radiative transfer model (RRTM)
longwave (Mlawer et al., 1997) radiation schemes,
including the refined upper boundary condition for
RRTM (Cavallo et al., 2011), necessary when cy-
cling model tops above 50 hPa; the Yonsei Univer-
sity boundary layer scheme (Hong et al., 2006); the
Noah land surface model (Chen and Dudhia, 2001);
and the Kain-Fritsch cumulus parameterization (Kain
and Fritsch, 1990). The model domain for the experi-
ments, as shown in Fig. 1, has an 18-km grid spacing
on a 400 × 300 horizontal grid cell and 43 vertical lev-

els, with the model top at 10 hPa.
3.2.2 Data assimilation experiments

Microwave and infrared radiance data are two ma-
jor sources of satellite data, and both are important
observation types for data assimilation, especially for
areas over oceans with sparse conventional observa-
tions. As two representative sources of microwave and
infrared radiance data, AMSU-A and IASI (Infrared
Atmospheric Sounding Interferometer) radiances are
widely studied in 3DVAR or EnKF frameworks (Mc-
Nally, 2007; Liu et al., 2012; Schwartz et al., 2012;
Xu et al., 2013a). In this study, five experiments
are carried out to assess the influences of AMSU-
A and IASI data on typhoon forecasts (Table 1),
using both the 3DVAR and the ETKF/3DVAR hy-
brid system. The first three experiments, denoted
as CTRL, 3DVAR−AM, and HYBRID−AM are con-
ducted to evaluate the AMSU-A data impacts. The
experiment CTRL assimilates only conventional obser-
vations from the NCEP operational global telecommu-
nication system dataset with 3DVAR. The experiment
3DVAR−AM, similar to CTRL, assimilates AMSU-A
radiances from NOAA-18 and MetOp-A besides the
conventional observations in CTRL. The experiment
HYBRID−AM assimilates all observations from the
experiment 3DVAR−AM, but with the hybrid system.
The distribution of AMSU-A observations available for
the first cycle time is shown in Fig. 1.
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Table 1. Descriptions of experiments

Experiment Assimilation system Observations

CTRL 3DVAR Conventional observations

3DVAR−AM 3DVAR Conventional observations + AMSU-A radiance

(NOAA-18 and MetOp-A)

HYBRID−AM ETKF/3DVAR hybrid Same as 3DVAR−AM

3DVAR−AMIA 3DVAR Conventional observations + AMSU-A radiance (NOAA-18

and MetOp-A) + IASI radiance (MetOp-A)

HYBRID−AMIA HYBRID Same as 3DVAR−AMIA

The IASI (Blumstein et al., 2004) is an advanced
sensor, providing observational atmospheric temper-
ature and humidity data with unprecedented accu-
racy and resolution. Xu et al. (2013a) found that
including IASI radiance data improved TC forecasts,
especially for TC tracks in 3DVAR. Assimilation ef-
fects of both AMSU-A and IASI radiances on typhoons
in the hybrid framework are explored to discover the
extent to which IASI radiances will be complemen-
tary or redundant to AMSU-A radiances in the hybrid
framework. Two extra experiments 3DVAR−AMIA
and HYBIRD−AMIA are conducted, similar to exper-
iments 3DVAR−AM and HYBRID−AM, respectively,
but also assimilate IASI radiances from MetOp-A with
channels around 15.0 μm.

Forecast-analysis experiments are carried out on
a 6-h cycling basis. The data assimilation period is
from 0600 UTC 18 July to 0000 UTC 1 August 2012.
We compute the BEC statistics provided by the NMC
method (Parrish and Derber, 1992) by using the dif-
ferences in the 24- and 12-h forecasts initiated from
GFS analyses at 0000 and 1200 UTC every day from
1 to 30 July 2011. During this period, four typhoons
that formed in the western Pacific Ocean struck east-
ern China. The BEC statistics could have been de-
rived from any one of these four. The background
ensemble in the first analysis is provided by the 6-h
ensemble forecast initiated from the NCEP GFS 0.5◦

× 0.5◦ analysis at 0000 UTC 18 July. The forecast
ensemble is then re-centered about the GFS analy-
sis, shifting the ensemble mean to preserve the per-
turbations about the mean. For the following cycles,
the background is a 6-h WRF forecast from the pre-
vious cycle. The lateral boundary conditions for the
WRF forecasts are also provided by the operational
GFS forecasts at 3-h intervals. In total, there are 56

analyses and forecasts during the period.

4. Results

4.1 Ensemble performance

The key to ensemble-based DA is the use of an
ensemble to estimate the forecast error in a flow de-
pendent manner, so it is important to briefly examine
the ensemble performance. The ensemble spread of
wind and temperature at the 9th model level is shown
in Fig. 2 after 2-day cycles valid at 0000 UTC 20 July,
when Typhoon Vicente formed. The ensemble spread
reveals patterns that reflect features of the meteoro-
logical conditions and observation locations. Great
spread is found over western China, where few obser-
vations are available to constrain the model. A local
spread maximum is evident for wind speed and tem-
perature in the northeast of the Philippines, where the
TCs moved, reflecting the uncertainty of TC predic-
tion.

In a well-calibrated system, the ensemble mean
root-mean-square error (RMSE) compared to obser-
vations (or other reference) equals the “total spread”
(Houtekamer et al., 2005). The forecast RMSEs, with
a total spread aggregated between 0000 UTC 19 and
0000 UTC 31 July, and the static background error
(defined as CV−5) calculated by the “gen−be” util-
ity in WRFDA (Wang et al., 2014) using the NMC
method are shown in Figs. 3a and 3b. The fore-
cast RMSEs are assessed by comparing the forecast
ensemble mean to the GFS analyses. We generate a
200-member ensemble by sampling the background er-
ror with Gaussian noise using the random-cv facility in
WRFDA. The static background errors in Fig. 3 are
estimated based on the ensemble perturbations in the
200 members. The averaged wind and temperature
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Fig. 2. Ensemble spread for (a) wind speed (m s−1) and (b) temperature (K) valid at 0000 UTC 20 July 2012 at the

9th model level.

Fig. 3. Static background error (CV−5), averaged forecast RMSEs against GFS analyses, and averaged ensemble spread

at 0000 UTC 19 July and 0000 UTC 1 August for (a) wind speed (m s−1) and (b) temperature (K).

forecast RMSEs are less than 3 m s−1 and 1 K for most
levels. For winds, the static BEC calculated with the
NMC method is largely underestimated, also found by
Wang et al. (2014), whereas the ensemble spread is in
between the RMSEs and the static BEC. The ensem-
ble lacks sufficient spread in temperature, especially
for the low levels. The increment from assimilation is
probably small where spread is small, indicating less
forecast uncertainty. The final BEC from the hybrid
system, as a mix of the flow-dependent and the static
BEC, plays an important role in the data assimilation
procedure.

4.2 AMSU-A radiance impact

4.2.1 Analysis and forecast verification against ERA-

Interim reanalysis
The mean differences between the 0000 and 1200

UTC model analyses and corresponding ERA-Interim
fields (model minus ERA-Interim) over the experi-
mental period are shown in Fig. 4 for temperature
and wind speed. The CTRL analyses exhibit sig-
nificant warm biases (Fig. 4a) relative to the ERA-
Interim over most of the domain, especially along the
typhoon tracks, with larger bias values compared to
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Fig. 4. (a, b, c) Averaged temperature (K) and (d, e, f) wind speed (m s−1) bias at the 9th model level for CTRL,

3DVAR−AM, and HYBRID−AM against the ERA-Interim over the period 0000 UTC 19 July and 0000 UTC 1 August.

HYBIRD−AM (3.28 versus 2.82), consistent with the
results of Liu et al. (2012). Past studies (e.g., Wang
et al., 2011; Wang and Huang, 2012) have shown that
wind perturbation around TCs plays an important role
in TC movements. From Figs. 4c and 4f, it is clear
that HYBRID−AM shows the smallest bias compared
to both CTRL and 3DVAR−AM for both fields, even

over eastern China, where few observations are avail-
able, which is achieved through the BEC.
4.2.2 Track forecast verification

Figure 5 shows the 72-h track forecasts initialized
at 0000 UTC 21 and 0000 UTC 31 July every 6 hours,
respectively. The best track positions from the China
Meteorological Administration are also plotted (black

Fig. 5. 72-h track forecasts initialized at (a) 0000 UTC 21 and (b) 0000 UTC 31 July 2012 for BEST−TRACK, CTRL,

3DVAR−AM, and HYBRID−AM.
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dots). For the forecasts beginning at 0000 UTC 21
July (Fig. 5a), the AMSU-A radiance has a positive
impact on the track forecast from both 3DVAR−AM
and HYBRID−AM, preventing the northward bias.
The forecast track from HYBRID−AM agrees better
with the best track than the CTRL and 3DVAR−AM.
The worst track forecast occurs for Saola, with a sig-
nificant northeastward bias from both 3DVAR exper-
iments. For the forecasts beginning at 0000 UTC
31 July (Fig. 5b), the northeastward biases from
the CTRL and 3DVAR−AM experiments are evident.
However, even in these poor forecasts, the hybrid sys-
tem still upgrades the track forecast, especially for
the first 36 hours, though the typhoons moved rather
faster after making landfall.

4.2.3 Forecast verification against conventional ob-

servations
To assess large-scale performance, 36-h forecasts

are verified against a set of conventional observations
(radiosondes and GeoAMV) in Fig. 6 from 0000 UTC
20 to 0000 UTC 1 August. Inclusion of AMSU-A ra-
diance data has a positive impact on all the variables
in 3DVAR, except for slightly worse temperature fore-
casts at the very low and high levels. The hybrid ex-
periment agrees better with the observations than the
3DVAR experiment does at almost all levels for wind
and temperature and at low levels for specific humid-
ity.

4.3 Added value of IASI radiance data assim-

ilation

Figure 7 shows the absolute track errors of the ty-
phoons for the two 3DVAR experiments (3DVAR−AM
and 3DVAR−AMIA) and two hybrid experiments
(HYBIRD−AM and HYBRID−AMIA). Consistent
with the results from Xu et al. (2013a), the IASI radi-
ance has a steady positive impact on the forecast skill
when tracking the 3DVAR framework within approx-
imately the first 54 hours. Generally, track forecasts
from the hybrid scheme are better than or at least
comparable to those from the 3DVAR system for most
forecast hours. HYBRID−AMIA improves the track
forecast for Typhoon Saola more significantly than for
Typhoon Vicente in Fig. 7b.

Similar to Fig. 6, Fig. 8 displays the
RMSE profiles of the 36-h forecasts verified against
a set of conventional observations. Consistent with
the results from Xu et al. (2013a), experiment
3DVAR−AMIA has smaller RMSEs for temperature,
wind, and specific humidity at most levels compared
to 3DVAR−AM. Radiance assimilation in the hybrid
system dramatically improves forecasts of all variables
consistently. The assimilation IASI radiance data can
upgrade forecasts of wind and specific humidity at al-
most all levels. The RMSEs from HYBRID−AM and
HYBRID−AMIA are comparable for the temperature
forecast. One possible reason why the IASI data give

Fig. 6. Vertical profiles of 36-h forecast RMSEs for (a) wind speed (m s−1), (b) temperature (K), and (c) specific

humidity (g kg−1), against conventional observations for CTRL, 3DVAR−AM, and HYBRID−AM. The numbers of

conventional observations are shown on the right of each panel.
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Fig. 7. Mean absolute track errors as a function of forecast lead time for (a) Vicente from 0000 UTC 20 to 1800 UTC 21

July 2012, and (b) Saola from 0000 UTC 30 to 1800 UTC 31 July 2012 for experiments 3DVAR−AM, 3DVAR−AMIA,

HYBRID−AM, and HYBRID−AMIA.

Fig. 8. As in Fig. 6, but for experiments 3DVAR−AM, 3DVAR−AMIA, HYBRID−AM, and HYBRID−AMIA.

better results in 3DVAR, but less promising results in
the hybrid system is that, as an advanced data as-
similation system, the hybrid system can make better
use of limited observation information compared to
3DVAR. When more observations are assimilated in
the hybrid system, the positive impacts are not signif-
icant, since the analyses from the hybrid system with
only conventional and AMSU-A data are already sat-
isfactory.

5. Summary and future perspectives

In this study, the WRFDA ETKF/3DVAR hybrid
system is used to predict two typhoons using AMSU-
A and IASI radiance data. The vertical localization

schemes are considered for radiance assimilation in
the hybrid system. The results show that ETKF has
some skill in updating the ensemble perturbations and
maintaining the ensemble spread, corresponding to the
forecast errors, especially for wind. The hybrid scheme
provides a flow dependent background error with re-
spect to the TC environment based on the ensem-
ble performance. Model output is compared to TC
“best tracks” and conventional observations. AMSU-
A radiance data have slight positive impacts on the
track forecast with the 3DVAR method. Typhoon
track forecast skills are greatly improved when the hy-
brid scheme is employed. For 36-h forecasts, the hy-
brid scheme has lower RMSEs for wind, temperature
at most levels, and specific humidity for at low levels,
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compared to 3DVAR.
The assimilation of both AMSU-A and IASI ra-

diance data in the ETKF/3DVAR hybrid system is
also conducted. On average, the use of the IASI ra-
diance data in the hybrid system upgrades the track,
wind, and specific humidity forecast compared to the
experiment without the IASI radiance in the hybrid
system, but less significantly and consistently than
the use of IASI radiances in 3DVAR compared to the
experiment without IASI radiance in 3DVAR.

In this study, we use ETKF/3DVAR hybrid to
investigate two typhoon cases. To assess the im-
pact of radiance assimilation in the framework of
ETKF/3DVAR hybrid on TCs, additional studies
with more cases over extended periods are needed. As
radiances are important in improving the quality of
initial conditions of NWP systems, especially for TC
forecasts, effective use of more radiance observations
from other sensors should also be considered for future
studies. Only track forecasts are emphasized in this
study, since the intensity forecasts are not encouraging
due to limitations of NWP in model dynamics, physi-
cal parameterizations, spatial resolution, etc. Further
investigations into the use of the ETKF/3DVAR hy-
brid radiance data assimilation system for typhoon
intensity forecasts are ongoing and will be reported in
future papers.

As ETKF solves the Kalman filter equation in the
ensemble space without localization, a single inflation
factor is applied domain-wide. Sampling errors can
easily cause instability issues (Bowler et al., 2008), es-
pecially for large non-physical perturbations. Further
work is also planned to improve the inflation schemes
in regional sub-domains or in a scale-dependent man-
ner, to stabilize the ETKF scheme.
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Auligné, T., A. P. Dee, and D. P. McNally, 2007: Adap-

tive bias correction for satellite data in a numerical

weather prediction system. Quart. J. Roy. Meteor.

Soc., 133, 631–642.

Barker, D. M., W. Huang, Y.-R. Guo, et al., 2004: A

three-dimensional variational data assimilation sys-

tem for MM5: Implementation and initial results.

Mon. Wea. Rev., 132, 897–914.

Barker, D. M., X.-Y. Huang, Z. Liu, et al., 2012: The

Weather Research and Forecasting (WRF) model’s

community variational/ensemble data assimilation

system: WRFDA. Bull. Amer. Meteor. Soc., 93,

831–843.

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001:

Adaptive sampling with the ensemble transform

Kalman filter. Part I: Theoretical aspects. Mon.

Wea. Rev., 129, 420–436.

Blumstein, D., G. Chalon, T. Carlier, et al., 2004: IASI

instrument: Technical overview and measured per-

formances. Proceedings of SPIE, 5543, 196–207.

Bowler, N. E., A. Arribas, K. R. Mylne, et al., 2008: The

MOGREPS short-range ensemble prediction system.

Quart. J. Roy. Meteor. Soc., 134, 703–722.

Cavallo, S. M., J. Dudhia, and C. Snyder, 2011: A multi-

layer upper-boundary condition for longwave radia-

tive flux to correct temperature biases in a mesoscale

model. Mon. Wea. Rev., 139, 1952–1959.

Chen, F., and J. Dudhia, 2001: Coupling an ad-

vanced land-surface/ hydrology model with the Penn

State/NCAR MM5 modeling system. Part I: Model

description and implementation. Mon. Wea. Rev.,

129, 569–585.

Chou, M. D., and M. J. Suarez, 1994: An efficient ther-

mal infrared radiation parameterization for use in

general circulation models. NASA Tech. Memo.,

Maryland, 85 pp.

Dee, D. P., and S. M. Uppala, 2009: Variational bias

correction of satellite radiance data in the ERA-

Interim reanalysis. Quart. J. Roy. Meteor. Soc.,

135, 1830–1841.

Derber, J. C., and W. S. Wu, 1998: The use of TOVS

clear-sky radiances in the NCEP SSI analysis sys-

tem. Mon. Wea. Rev., 126, 2287–2299.

Dowell, D. C., F. Zhang, L. J. Wicker, et al., 2004: Wind

and temperature retrievals in the 17 May 1981 Ar-

cadia, Oklahoma, supercell: Ensemble Kalman filter

experiments. Mon. Wea. Rev., 132, 1982–2005.

Evensen, G., 1994: Sequential data assimilation with

a nonlinear quasi-geostrophic model using Monte

Carlo methods to forecast error statistics. J. Geo-

phys. Res., 99, 10143–10162.



NO.1 XU Dongmei, HUANG Xiang-Yu, WANG Hongli, et al. 39

Hamill, T. M., and C. Snyder, 2000: A hybrid ensem-

ble Kalman filter—3D variational analysis scheme.

Mon. Wea. Rev., 128, 2905–2919.

Hamill, T. M., J. S. Whitaker, M. Fiorino, et al., 2011a:

Global ensemble predictions of 2009’s tropical cy-

clones initialized with an ensemble Kalman filter.

Mon. Wea. Rev., 139, 668–688.

Hamill, T. M., J. S. Whitaker, D. T. Kleist, et al., 2011b:

Predictions of 2010’s tropical cyclones using the

GFS and ensemble-based data assimilation meth-

ods. Mon. Wea. Rev., 139, 3243–3247.

Han, Y., P. Van Delst, Q. H. Liu, et al., 2006: JCSDA

community radiative transfer model (CRTM)–

Version 1. NOAA Tech. Rep. NESDIS, 122, 33

pp.

Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised

approach to ice microphysical processes for the bulk

parameterization of clouds and precipitation. Mon.

Wea. Rev., 132, 103–120.

Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new ver-

tical diffusion package with an explicit treatment

of entrainment processes. Mon. Wea. Rev., 134,

2318–2341.

Houtekamer, P. L., H. L. Mitchell, G. Pellerin, et al.,

2005: Atmospheric data assimilation with an en-

semble Kalman filter: Results with real observa-

tions. Mon. Wea. Rev., 133, 604–620.

Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional

entraining/detraining plume model and its applica-

tion in convective parameterization. J. Atmos. Sci.,

47, 2784–2802.

Li, Y. Z., X. G. Wang, and M. Xue, 2012: Assimilation

of radar radial velocity data with the WRF hybrid

ensemble-3DVAR system for the prediction of Hur-

ricane Ike (2008). Mon. Wea. Rev., 140, 3507–3524.

Liu, Q. H., and F. Z. Weng, 2006: Advanced doubling-

adding method for radiative transfer in planetary

atmosphere. J. Atmos. Sci., 63, 3459–3465.

Liu, Z., C. S. Schwartz, C. Snyder, et al., 2012: Impact of

assimilating AMSU-A radiances on forecasts of 2008

Atlantic tropical cyclones initialized with a limited-

area ensemble Kalman filter. Mon. Wea. Rev., 140,

4017–4034.

Lorenc, A. C., 1986: Analysis methods for numerical

weather prediction. Quart. J. Roy. Meteor. Soc.,

112, 1177–1194.

Lorenc, A. C., 2003: The potential of the ensemble

Kalman filter for NWP—A comparison with 4D-

VAR. Quart. J. Roy. Meteor. Soc., 129, 3183–3203.

McNally, A. P., and P. D. Watts, 2003: A cloud detec-

tion algorithm for high-spectral-resolution infrared

sounders. Quart. J. Roy. Meteor. Soc., 129, 3411–

3423.

McNally, A. P., P. D. Watts, J. A. Smith, et al., 2007:

The assimilation of AIRS radiance data at ECMWF.

Quart. J. Roy. Meteor. Soc., 132, 935–957.

Meng, Z., and F. Zhang, 2008: Tests of an ensemble

Kalman filter for mesoscale and regional-scale data

assimilation. Part IV: Comparison with 3DVAR in

a month-long experiment. Mon. Wea. Rev., 136,

3671–3682.

Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997:

Radiative transfer for inhomogeneous atmosphere:

RRTM, a validated correlated-k model for the long-

wave. J. Geophys. Res., 102, 16663–16682.

Parrish, D. F., and J. C. Derber, 1992: The National

Meteorological Center’s spectral statistical interpo-

lation analysis system. Mon. Wea. Rev., 120,

1747–1763.

Schwartz, C. S., Z. Liu, Y. Chen, et al., 2012: Impact

of assimilating microwave radiances with a limited-

area ensemble data assimilation system on forecasts

of Typhoon Morakot. Wea. Forecasting, 27, 424–

437.

Schwartz, C. S., Z. Liu, X.-Y. Huang, et al., 2013: Com-

paring limited-area 3DVAR and hybrid variational-

ensemble data assimilation methods for typhoon

track forecasts: Sensitivity to outer loops and vor-

tex relocation. Mon. Wea. Rev., 141, 4350–4372.

Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008:

A description of the advanced research WRF version

3. NCAR Tech. Note, NCAR/TN-4751STR, 113 pp.

Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary

conditions for limited-area ensemble Kalman filters.

Mon. Wea. Rev., 134, 2490–2502.

Torn, R. D., and G. J. Hakim, 2009: Ensemble data

assimilation applied to RAINEX observations of

Hurricane Katrina (2005). Mon. Wea. Rev., 137,

2817–2829.

Wang, H., M. Mu, and X.-Y. Huang, 2011: Application of

conditional nonlinear optimal perturbation to trop-

ical cyclone adaptive observation using the Weather

Research Forecasting (WRF) model. Tellus A, 63,

939–957.

Wang, H. L., and X.-Y. Huang, 2012: TAMDAR obser-

vation assimilation in WRF 3D-Var and its impact

on Hurricane Ike (2008) Forecast. Atmos. Oceanic

Sci. Lett., 5, 206–211.



40 JOURNAL OF METEOROLOGICAL RESEARCH VOL.29

Wang, H. L., X.-Y. Huang, J. Sun, et al., 2014: Inhomo-

geneous background error modeling for WRF-Var

using the NMC method. J. Appl. Meteor.climatol.,

53, 2287–2309.

Wang, X. G., 2011: Application of the WRF hybrid

ETKF-3DVAR data assimilation system for hurri-

cane track forecasts. Wea. Forecasting, 26, 868–884.

Wang, X. G., T. M. Hamill, J. S. Whitaker, et al., 2007: A

comparison of hybrid ensemble transform Kalman

filter-OI and ensemble square-root filter analysis

schemes. Mon. Wea. Rev., 135, 1055–1076.

Wang, X. G., D. M. Barker, C. Snyder, et al., 2008: A

hybrid ETKF-3DVAR data assimilation scheme for

the WRF model. Part II: Real observation experi-

ments. Mon. Wea. Rev., 136, 5132–5147.

Whitaker, J. S., T. M. Hamill, X. Wei, et al., 2008:

Ensemble data assimilation with the NCEP Global

Forecast System. Mon. Wea. Rev., 136, 463–482.

Xu, D., Z. Liu, X.-Y. Huang, et al., 2013a: Impact of

assimilating IASI radiance observations on forecasts

of two tropical cyclones. Meteor. Atmos. Phys.,

122, 1–18.

Xu, D., A. P. Mizzi, and X.-Y. Huang, 2013b: Im-

pact of TAMDAR data on Hurricane Paula with

an eigen-structure dependent inflation scheme in

the WRFDA/ETKF hybrid data assimilation sys-

tem. 93rd American Meteorological Society Annual

Meeting, Austin, Texas, USA, 1–6 January.

Zhang, F., Y. Weng, J. A. Sippel, et al., 2009: Cloud-

resolving hurricane initialization and prediction

through assimilation of Doppler radar observations

with an ensemble Kalman filter. Mon. Wea. Rev.,

137, 2105–2125.


