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ABSTRACT

Weighted mean temperature (Tm) is one of the most important conversion parameters for calculating
precipitable water vapor by the signal path wet delay in ground-based GPS meteorology. This paper first
discusses the Tm regression models for Hong Kong (HK) and the associated error statistics relative to the
true values of Tm from the numerical method. The results show that there is little difference in precision
between annual and seasonal Tm regression models for HK. The Bevis Tm-Ts (surface temperature) regression
model is more suitable for northeastern China and the Qinghai-Tibetan Plateau than the local models. For
areas lack of historical sounding data, the Kriging interpolation method and the ECMWF reanalysis product
ERA-interim were employed to set up local Tm-Ts models. The results indicate that the Tm derived by the
ERA-interim data coincides well with that by the sounding data, and the Kriging interpolation method can
successfully obtain the coefficients of local Tm-Ts models, suggesting that these two approaches may serve
as effective ways in the acquisition and localization of Tm.
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1. Introduction

Water vapor is an active composition of the atmo-
sphere, with extremely uneven distributions and large
temporal and spatial variations in the atmosphere.
The phase change of water vapor is directly related
to precipitation and plays an important role in the
atmosphere energy transfer, weather development, ra-
diation budget of the earth-atmosphere system, and
global climate change (Bevis et al., 1992; Rocken et al.,
1995; Bi et al., 2006; Falconer et al., 2009; Perler et al.,
2011). Low temporal and spatial resolutions of routine
atmosphere observations restrict our knowledge on the
spatiotemporal variation features of water vapor. As a
result, it leads to low precision of the initial humidity
field in numerical weather prediction (NWP) models
as well as low accuracy of NWP results (Gutman et al.,

2004; Song, 2004; Cao et al., 2005, 2006; Bastin et al.,
2007). Ground-based GPS technology provides a new
mean for atmospheric water vapor observation, which
can be made all the time under all weather conditions
at high precision. It supplements the traditional atmo-
sphere observation methods (Song, 2004; Lutz, 2009).

When using path wet delay (PWD) to obtain pre-
cipitable water vapor (PWV) in ground-based GPS
technology, there are three important computation for-
mulas as follows.

PWV = Π × PWD, (1)

Π =
106

ρvRv(k′
2 + k3/Tm)

, (2)

Tm =

∫
(e/T )dz

∫
(e/T 2)dz

, (3)
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where Π is conversion coefficient, ρv is density of liq-
uid water equal to 1.0 g cm−3, Rv is gas constant for
water vapor equal to 0.4613 J g−1 K−1, and k′

2 and k3

are test constants of atmosphere refractive index equal
to k′

2=22.1±2.2 K hPa−1 and k3=(3.739±0.012)×105

K2 hPa−1. As indicated by Eq. (3), Tm is the average
temperature of the atmosphere weighted by the water
vapor pressure, called the weighted mean temperature.

To evaluate the impact of Tm on the PWV, the
first-order partial derivative is derived as follows:

∂(PWV)/∂Tm =
106k3

ρvRv(k′
2Tm + k3)2

PWD. (4)

Typical values of zenith path hydrostatic delay
(PHD) are 2.30 m and 0.00–0.40 m for PWD (Walpers-
dorf et al., 2001). Assuming the variables of PWD and
Tm are constants, substitute the extreme values (e.g.,
PWD = 400 mm, Tm = 285 K) of all parameters into
Eq. (4), the result is as follows:

d(PWV)/dTm = 0.2243. (5)

Equation (5) shows that the Tm error of 1 K can
cause a PWV error of 0.2243 mm in the case of a PWD
value of 400 mm and Tm of 285 K. Therefore, accurate
calculation of Tm is important. In ground-based GPS
technology, there are several ways to acquire Tm: (1)
considering Tm as a constant; (2) computing Tm by
use of a numerical integration method based on Eq.
(3) using radiosonde data or numeral prediction prod-
ucts; (3) computing Tm from Ts (Ts denotes surface
temperature) based on specific local Tm-Ts regression
models. In the above methods, considering Tm as a
constant may lead to low precision of Tm and PWV;
the numerical integration method has the highest pre-
cision and Tm thus derived is often taken as the “true”
observation, but it is difficult to apply this method to
real-time acquisition of Tm since the radiosonde data
or numeral prediction products are not available in the
real-time mode. Computing Tm from Ts based on the
Tm-Ts regression models is simple and easy with ac-
ceptable precision in the current ground-based GPS
technology.

Most studies use statistical regression models to
obtain Tm. Bevis et al. (1992) made an analysis
of 8718 radiosonde profiles spanning approximately

a 2-yr interval for the stations in the United States
with the latitude range of 27◦–65◦N and a height
range of 0–1.6 km, and yielded a linear regression
Tm=70.2+0.72Ts. The RMS deviation from this re-
gression is 4.74 K, which is a relative error of less than
2%. The Bevis regression model has been applied to
many studies of Tm in China (Li et al., 1999; Liu et
al., 2006; Yue et al., 2008; Li et al., 2009; Yu and Liu,
2009; Wang et al., 2011a, b). However, it is found that
the errors of the Bevis empirical model distribute un-
evenly in China and are generally more than 4 K with
the extreme value of 8 K in some areas (Yu et al.,
2011). The impact of the Bevis empirical model er-
rors on the PWV can reach the millimeter level under
an extreme weather condition with rich water vapor.

Previous studies focused on the setup of local Tm-
Ts regression models for a specific region based on
sounding data (Li et al., 1999; Liu et al., 2006; Yue et
al., 2008; Li et al., 2009; Wang et al., 2011a). Yu and
Liu (2009) and Yu et al. (2011) discussed the error
statistics of the Bevis model over China and gave the
dependence of the errors on the elevation of station.
Wang et al. (2011b) investigated the correlation of the
coefficients a and b of the local Tm model with lon-
gitude, latitude, and station elevation. Nonetheless,
some aspects such as the spatiotemporal distribution
characteristics of Tm and the associated retrieval error
comparison between the Bevis model and local models
over entire China are rarely researched. Yu and Liu
(2009) presented a method adding a correction rele-
vant to elevation in the Bevis model to obtain Tm over
areas without historical sounding data.

Reanalysis of multi-decadal series of past obser-
vations has been widely utilized for the studies of at-
mospheric and oceanic processes and predictability.
Since reanalysis data are produced using sophisticated
and advanced data assimilation systems developed for
NWP, they are more suitable than operational analy-
sis for use in studies of long-term variability of climate.
Reanalysis products are used increasingly in many
fields that require an observational record of the state
of either the atmosphere or its underlying land and
ocean surfaces. So far, ECMWF has produced three
reanalysis products including ERA-15, ERA-40, and
ERA-interim, among which ERA-interim is a global
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reanalysis of the data-rich period since 1989. The
ERA-interim data assimilation system uses a 2006
release of the Integrated Forecasting System (IFS
Cy31r2), which contains many improvements in both
the forecasting model and the analysis methodol-
ogy, compared to those for ERA-40. The ERA-
interim reanalysis was put into operation in March
2009, and has been running in near real-time to
support climate monitoring (http://www.ecmwf.int/
research/era/do/get/Reanalysis−ECMWF, retrieved
on 19 December 2011).

This study adopts the numerical integration
method and the sounding data of 87 international
exchange sounding stations in China to obtain the
spatiotemporal distribution characteristics of Tm over
China. Meanwhile, we compare the results of Tm cal-
culated from the Bevis model with those from the
local regression models based on historical sounding
data, and then evaluate the performance of the Bevis
model and the local Tm-Ts regression models. When
setting up regression models for areas without sound-
ing data, the Kriging spatial interpolation method is
used to obtain the coefficients of the local Tm-Ts regres-
sion models and the results are assessed in comparison
with the numerical method results using the sounding
data. In addition, the Tm-Ts regression model results
based on the ERA-interim reanalysis product are also
compared with those based on the sounding data of
Beijing and Hong Kong (HK), and the results indi-
cate that the ERA-interim reanalysis provide another
data source for local Tm calculation in areas without
sounding data.

2. Data and method

In this paper, we use local Tm-Ts regression mod-
els based on sounding data or the ERA-interim re-
analysis product to derive Tm, and use the “true” ob-
servation calculated from the sounding data with the
numerical integration formula to validate the regres-
sion results. The data of 87 international sounding
stations in China for 2003–2010 are downloaded from
the University of Wyoming website http://weather.
uwyo.edu/upperair/sounding.html (retrieved on 19
December 2011). The ERA-interim data are down-

loaded from http://data-portal.ecmwf.int/data/d/
interim−daily (retrieved on 19 December 2011).

The numerical integration method is a discretion
form of Eq. (3) and is described below. Tm can be re-
trieved from both sounding data and reanalysis prod-
ucts as follows (Li et al., 1999; Liu et al., 2006; Yue et
al., 2008; Li et al., 2009; Yu and Liu, 2009; Wang et
al., 2011a, b).

Tm =

n∑
i=1

( ei

Ti

)
Δhi

n∑
i=1

( ei

T 2
i

)
Δhi

, (6)

where
( ei

Ti

)
=

( ei

Ti
+

ei−1

Ti−1

2

)
,
( ei

T 2
i

)
=

( ei

T 2
i

+
ei−1

T 2
i−1

2

)
,

Δhi is the thickness of ith layer atmosphere, ei and
Ti are upper bound water vapor pressure and temper-
ature of ith layer atmosphere respectively, and ei−1

and Ti−1 are lower bound water vapor pressure and
temperature of ith layer atmosphere respectively.

For sounding data, the water vapor pressure is
equal to saturated vapor pressure of dew point temper-
ature. For reanalysis product ERA-interim, the tem-
perature, geopotential height (H), and relative humid-
ity (RH) fields have a resolution of 1.5◦ latitude ×1.5◦

longitude and 37 vertical levels. The surface tempera-
ture (Ts) and surface dew point temperature fields at
the same horizontal resolution are also used. All vari-
ables are available 4 times daily at 0000, 0600, 1200,
and 1800 UTC. The water vapor pressure (e) is ob-
tained from RH and saturation water vapor pressure
(E) as follows:

t = T − 273.15,

E = 6.1078 × 10(7.5 × t/(237.3 + t)), t > 0,

E = 6.1078 × 10(9.5 × t/(265.5 + t)), t � 0,

e = RH × E. (7)

When Eq. (6) is used to calculate Tm, all data at the
levels below the station’s geopotential height value are
discarded. The surface water vapor pressure is calcu-
lated from the surface dew point temperature.

When comparing the Tm values obtained from
sounding with that obtained from ERA-interim based
on Eq. (6), interpolations are conducted as follows. In
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the vertical direction, the level at which the station is
located is determined according to the station’s actual
geopotential height. Linear interpolation is used to ob-
tain the surface temperature of the station based on
the reanalysis data of two adjacent vertical grids, and
exponential interpolation is used to obtain its water
vapor pressure. In the horizontal direction, the tem-
perature and water vapor pressure at each level above
the station are obtained using bi-linear interpolation
based on data of the four adjacent grids at the same
level.

The Tm-Ts regression model is obtained using
Matlab based on historical Tm and Ts sample pairs
as follows. First, Tm is calculated by Eq. (6) twice
a day for sounding data and four times a day for
ERA-interim reanalysis product. Note that Ts can
be directly obtained from the sounding data or ERA-
interim reanalysis product. Then, the Tm-Ts regres-
sion model based on the total samples in a certain pe-
riod of time can be set up with the Matlab software.
For example, during a one-year period, there are about
730 samples for sounding data and 1460 samples for
ERA-interim reanalysis product. The precision of the
Tm-Ts regression model is evaluated by comparing Tm

calculated by Eq. (6) with Tm calculated by the Tm-Ts

regression model.

3. Regression of Tm at HK by seasons based

on the sounding data

Based on the sounding data of HK (WMO station
ID 45004) in 2005, Tm of this station was calculated
by Eq. (6). Figure 1 shows the Tm annual change in
2005. Tm varies significantly by season between 275
and 295 K with the highest value in summer and low-
est in winter. This gives us a rough idea of how Tm

changes with season. It also raises a question as to
if it is better to establish seasonal regression models
according to seasonal sounding data rather than to
obtain general/annual regression models according to
consecutive multi-year sounding data time series, i.e.,
if seasonality of the regression should be considered
and could be used to facilitate the regression accu-
racy?

In this section, the precision of the annual and

seasonal Tm-Ts regression models for the HK station
based on the sounding data are evaluated. There are
59 missing records for a total of 4325 valid times for
the period 2003–2008 for HK sounding station. The
HK−annual Tm-Ts model in Table 1 is set up based
on all the sounding data from 2003 to 2008. We clas-
sify the total sounding data of 4325 entries from 2003
to 2008 by season, and about 1080 (Tm and Ts) sam-
ples are obtained for every season. Based on that,
four seasonal Tm-Ts empirical models are set up, called
HK−season (spring, summer, autumn, and winter), as
shown in Table 1. Table 1 indicates that the a and b

coefficients of spring and autumn models are close to
that of the annual model, while the a and b coefficients
of summer and winter models differ largely from that
of the annual model.

We use the sounding data of HK station in 2009
to validate the local seasonal Tm-Ts empirical models.
The values of Tm in 2009 are calculated using Eq. (6)
and taken as real values. With regard to the seasonal
regression models in Table 1, there are a total of 730
(Tm and Ts) samples in 2009 with averagely 185 sam-
ples in every season. The model values of Tm for the
four seasons in 2009 are calculated from the seasonal
Tm-Ts empirical models, respectively, and their statis-
tic results are shown in Table 2. Although the a and b

coefficients of summer and winter models differ largely
from that of the annual model, there is almost no dif-
ference when replacing any of the seasonal models with
the annual one to calculate Tm. On the contrary, the
Bevis model has a larger bias than local seasonal mod-
els but almost the same RMS.

Why do the a and b coefficients of the summer
and winter models differ largely from that of the an-
nual model, but the Tm values differ little from that
calculated from their linear combination? The linear
trends of Tm from the four seasonal models and the
annual model are shown in Fig. 2. The summer tem-
perature in HK varies from 299.15 to 306.15 K (yellow
vertical range) with the mean value of 301.15 K, while
the winter temperature in HK varies from 287.15 to
293.15 K (lavender vertical range) with the mean value
of 290.15 K. Figure 2 shows that the trend line of Tm

from the summer model is very close to that from the
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Fig. 1. Annual change of Tm obtained by using the numerical integration method and the 0000 and 1200 UTC sounding

data of HK in 2005.

Table 1. Statistics of the seasonal Tm-Ts empirical models for HK

Model type Sample time Samples Regression model Bias (K) RMS (K)

HK−year Annual 4325 Tm=115.55+0.58Ts 1.49 1.88

HK−season (spring) Spring (Mar–May) 1091 Tm=116.39+0.57Ts 1.59 1.99

HK−season (summer) Summer (Jun–Aug) 1070 Tm=–7.55+0.99Ts 1.27 1.67

HK−season (autumn) Autumn (Sep–Nov) 1089 Tm=124.36+0.55Ts 1.49 1.83

HK−season (winter) Winter (Dec–Feb) 1075 Tm=50.88+0.80Ts 1.49 1.88

Table 2. Statistics of the seasonal Tm-Ts empirical models in comparison with the Bevis model for HK

Model name
Bias (K) RMS (K)

Spring Summer Autumn Winter Spring Summer Autumn Winter

Bevis 3.06 2.31 3.25 4.38 2.21 1.49 1.88 1.95

HK−year 1.96 1.51 1.43 1.72 2.08 1.56 1.68 2.17

HK−season 1.81 1.61 1.91 2.30 2.08 1.57 1.68 2.18

Fig. 2. Trend lines of the seasonal and annual regression

models for HK.

annual model within the temperature range of 299.15–
306.15 K, so is that with the winter model and annual

model for the temperature range of 287.15–293.15 K.
Thus, Tm calculated from the specific seasonal model
and annual model is almost the same.

4. Spatiotemporal distribution of Tm over
China derived from the sounding data

4.1 Tm distribution by the numerical integra-

tion method based on the sounding data

The average monthly Tm in January, April, July,
and October is calculated based on the sounding data
from 2003 to 2009 by Eq. (6) to reveal the spatial
and temporal distribution characteristics of Tm over
China. The results are shown in Fig. 3.

Figure 3 shows that the average monthly Tm over
southeastern China is the highest throughout the year,
whereas it is the lowest over northeastern China in
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Fig. 3. Spatial distributions of the average monthly Tm (K) calculated by using the sounding data and Eq. (6) over

China in (a) January, (b) April, (c) July, and (d) October.

January and over the Qinghai-Tibetan Plateau in July.
The general characteristics of spatiotemporal dis-

tributions of the average monthly surface temperature
Ts in China are consistent with Tm. The correlation
coefficient between Tm and Ts is 0.848 (Wang et al.,
2011b), which shows the feasibility of estimating Tm

by Ts.
Previous studies (e.g., Li et al., 1999; Liu et al.,

2006; Yue et al., 2008; Li et al., 2009; Yu and Liu,
2009; Wang et al., 2011a, b) never investigated the
overall spatiotemporal distribution of Tm over China.
Figure 3 shows that the Tm distributions may have
something to do with the climate pattern, population
density, and topography. Southeastern China is under
the influence of the subtropical monsoon climate with
high population density, and Tm is relatively high in
this region throughout the year. Northeastern China
is dominated by the temperate monsoon climate, and

Tm is comparatively low all the year except in summer.
Tm over the Qinghai-Tibetan Plateau is significantly
low compared with other areas in summer because of
its unique topography.

4.2 Tm distribution by the regression method

based on the sounding data

There are 120 sounding stations in China, among
which 87 are international exchange stations. The
data of the 87 stations from 2009 to 2010 are exam-
ined. We use the radiosonde data of 2009 to obtain the
local Tm-Ts regression model for each station, then use
the sounding data of 2010 to evaluate the local model
and compare with the Bevis model.

The results shown in Table 3 and Fig. 4 reveal
that not all the local Tm-Ts models are more precise
than the Bevis model; this is inconsistent with the
conclusion of previous studies (Li et al., 1999; Liu et
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al., 2006; Yue et al., 2008; Li et al., 2009; Yu and Liu,
2009; Wang et al., 2011a, b). In Table 3, dTm means
the difference between the real value of Tm in 2010 by
Eq. (6) using sounding data and the model value of
Tm by the local Tm-Ts model or the Bevis model using
the radiosonde data of 2009, where a−l is the a coef-
ficient of the Tm-Ts model and same is for b−l. The
Bias−l, RMSe−l, Max−l, and Num−l are respectively
the mean bias, standard deviation, maximum value
of dTm, and the number of samples with dTm greater
than five degrees based on the local model. Similarly,
the Bias−B, RMSe−B, Max−B, and Num−B are the
corresponding statistical variables for the Bevis model.
The number of samples is about 730 in 2010.

The results indicate that there are 22 sounding
stations for which the local Tm-Ts models are not bet-

ter than the Bevis model. Table 3 only lists the sta-
tistical information of 9 stations. Table 3 and Fig. 4
show that the Bevis model is fit for areas of northeast-
ern China and the Qinghai-Tibetan Plateau while it
has a large deviation in southeastern and northwestern
China, where the local Tm-Ts model works better.

5. Regression of Tm at two stations using the

Kriging method based on the sounding

data

The Kriging interpolation method provides an un-
biased optimal estimation for regional variables in a
limited area based on variation function spatial anal-
ysis. It takes into account the spatial correlation be-
tween the data points and is suitable for interpolation

Table 3. Comparison of the local Tm-Ts model with the Bevis model
Station number a−l b−l Bias−l RMSe−l Max−l Bias−B RMSe−B Max−B Num−l Num−B

51828 109.93 0.57 3.71 4.44 12.72 3.50 4.55 10.68 118 47

52323 98.07 0.61 3.72 4.59 12.01 3.64 4.58 8.64 132 55

52533 107.36 0.58 3.91 4.84 14.44 4.06 4.95 11.14 144 77

52681 95.62 0.63 4.03 4.83 12.26 3.88 4.79 12.76 145 110

52818 129.96 0.49 4.18 4.92 17.38 4.64 4.91 9.25 179 27

52836 80.33 0.67 3.77 4.62 15.45 4.03 4.50 11.14 122 31

54218 53.91 0.77 3.82 4.73 13.81 4.05 4.94 10.97 124 72

55299 67.01 0.72 3.92 4.84 9.1 4.87 4.84 4.81 72 0

56029 69.61 0.71 3.57 4.57 10.64 4.15 4.58 7.52 65 8

Fig. 4. Distribution of the number of samples with the Tm difference more than 5 K calculated from the Bevis model

and the local Tm-Ts model based on the sounding data in China.
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of spatial data. Details for Kriging interpolation can
be seen in Zeng and Huang (2007).

The average distance of adjacent sounding sta-
tions is about hundreds of kilometers. For southeast-
ern and northwestern China, the local Tm-Ts models
are difficult to set up due to the absence of sound-
ing data. The Kriging spatial interpolation method
is used to obtain the a and b coefficients of the local
Tm-Ts models for areas without sounding data. This
method is evaluated at two sounding stations, i.e.,
Pizhou (WMO station ID 57972) and Kuche (WMO
station ID 51644). Pizhou station locates in southeast-
ern China where a dense network of sounding stations
exists, whereas Kuche station locates in northwestern
China where there is a lack of sounding stations. Se-
lecting the two stations for test can validate if the
Kriging interpolation method is able to obtain local
Tm-Ts models for areas with both dense and coarse
distributions of sounding stations at acceptable preci-
sion. For areas such as southeastern and northwestern
China where the Bevis model fails to perform well, the
local Tm-Ts models should be set up.

The evaluation for Pizhou station is conducted as
follows: 1) use the Kriging method to generate a and

b isosurfaces based on the a and b coefficients of the
rest of the 86 sounding stations; 2) obtain the interpo-
lated values of the a and b coefficients for this station,
and the Kriging Tm-Ts model for this station is then
obtained; 3) use the observed sounding data of 2010
to derive a real local Tm-Ts model, compare with the
Kriging model derived in step 2, and calculate their
differences. The same process as described above is
applied to Kuzhe station. The results are shown in
Table 4.

In Table 4, a−k is the a coefficient of the Tm-Ts

model based on the Kriging interpolation method and
same holds for b−k. The Bias−k, RMSe−k, Max−k,
and Num−k are respectively the mean bias, stan-
dard deviation, maximum value of dTm, and the num-
ber of samples with dTm greater than five degrees
based on the Kriging method. The a−l, b−l, Bias−l,
RMSe−l, Max−l, and Num−l are the same as in
Table 3.

Table 4 shows that the Kriging spatial interpola-
tion method is feasible in setting up the appropriate
local Tm-Ts model for areas with no historical sound-
ing data such as southeastern and northwestern China,
where the Bevis model performs not well.

Table 4. Comparison of the local Tm-Ts models and the Bevis model for Pizhou and Kuche stations

Station a−l b−l a−k b−k Bias−l RMSe−l Max−l Num−l Bias−k RMSe−k Max−k Num−k

Kuche 100.04 0.62 106.03 0.59 3.11 3.88 10.06 89 3.04 3.71 10.47 75

Pizhou 106.455 0.61 98.75 0.64 1.92 2.37 7.5 16 2.08 2.42 7.1 9

6. Evaluation of Tm at Beijing and HK calcu-
lated by the numerical and regression met-
hods from two data sources

6.1 Tm values calculated by the numerical me-

thod from both data sources

We used ERA-interim and sounding data of 2003
for Beijing and 2007 for HK to derive Tm values by
Eq. (6). The results are shown in Table 5.

There are 1460 samples for the ERA-interim data
in both 2003 and 2007, from which 730 samples match
the time of the sounding data for 2003 and 719 samples
for 2007. Table 5 shows that there is little difference
between the Tm values calculated by Eq. (6) from
these two different datasets.

Table 5. Comparison of Tm computed by Eq. (6)

from the ERA-interim data and from the sounding

data for Beijing and HK

Sample year (samples) Bias (K) RMS (K)

Beijing 2003 (730) 0.0014 1.3861

HK 2007 (719) 0.0006 0.5841

Statistical analysis in Table 5 is performed in the
following way:

Difference: di = Tm(ERA interim) − Tm(sounding);

Systematic error: Bias=
∑

di

n
, where n is number

of samples;

Accuracy: RMS=

√ ∑
d2

i

n − 1
. (8)
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6.2 Tm values by the regression models from

the ERA-interim data

Once the local Tm-Ts empirical formula has been
set up, Tm can be calculated by Ts with high precision,
and it can then be used to obtain PWV using PWD

in ground-based GPS. We set up a Tm-Ts empirical
formula using the ERA-interim data of 2003 for Bei-
jing and 2007 for HK. The accuracy of this empirical
formula is evaluated by the ERA-interim data of 2004
for Beijing and 2008 for HK. The statistical results are
listed in Table 6.

Table 6. Statistics of the Tm-Ts regression models for Beijing and HK based on the ERA-interim data

Station Beijing HK

Year (sample number) 2003 (1460) 2007 (1460)

Regression RMS (K) 3.44 1.92

Tm-Ts model Tm=0.80Ts+48.20 Tm=0.50Ts+137.90

Year (sample number) to evaluate the 2004 (1462) 2008 (1462)

accuracy of the Tm-Ts model

Accuracy evaluation Bias 0.40 0.09

Accuracy evaluation RMS 3.99 1.96

How the statistical analysis in Table 6 was per-
formed is detailed in Table 7 for both Beijing and HK.

6.3 Tm values by regression models from both

data sources

To further understand the regressed Tm values
from the ERA-interim data, the corresponding sound-
ing data were also processed. Comparisons of Tm by
the ERA-interim and sounding data are shown in Ta-
ble 8. Table 8 shows that the local Tm-Ts empirical

model (Tm-Ts)EAR-interim based on the EAR-interim
reanalysis data coincides well with that based on the
sounding data.

To sum up, the above comparisons demonstrate
a good agreement between ERA-interim reanalysis
product and sounding data when calculating Tm based
on the numerical integration method and when setting
up Tm-Ts regression models in Beijing and HK. This is
easy to understand since radiosonde data are the key
and main data source for the assimilation of reanalysis

Table 7. Statistical method used to obtain Table 6

Difference 2003 di2003=Tm(regression)–Tm(Eq. (6) using 2003 data)

Regression RMS RMS=

√ ∑
d2

i2003

n − 1
, n: samples in 2003

Difference 2003–2004 di0304=Tm(regression)–Tm(Eq. (6) using 2004 data)

Accuracy evaluation Bias Bias=

∑
di0304

n
, n: samples in 2004

Accuracy evaluation RMS RMS=

√ ∑
d2

i0304

n − 1

Table 8. Comparisons of the Tm-Ts empirical formulas derived from ERA-interim data and sounding data

Station Beijing HK

Data source ERA-interim Sounding data ERA-interim Sounding data

Year (sample number) 2003 (1460) 2003 (730) 2007 (1460) 2007 (719)

Regression RMS 3.44 3.73 1.92 1.85

Tm-Ts model Tm=0.80Ts+48.20 Tm=0.83Ts+40.53 Tm= 0.50Ts+137.90 Tm=0.55Ts+122.42

Year (sample number) to evaluate 2004 (1462) 2004 (731) 2008 (1462) 2008 (726)

the accuracy of the model

Accuracy evaluation Bias 0.40 0.94 0.09 0.15

Accuracy evaluation RMS 3.99 4.90 1.96 2.02
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products. For areas with rich sounding data, the re-
analysis product in general has good quality too. It
is also proved that the ECMWF reanalysis product
ERA-interim can be applied to the acquisition of Tm

for Beijing and HK areas.

7. Conclusions

This paper first compares the difference between
the annual and seasonal Tm-Ts regression models for
HK in detail and then examines the applicability of the
Bevis Tm-Ts regression model over China. For areas
lack of historical sounding data, the Kriging interpo-
lation method and the ECMWF reanalysis product
ERA-interim are used to set up local Tm-Ts models.
We draw the following conclusions:

(1) The annual and seasonal Tm models have con-
siderable accuracy, Tm can be calculated precisely by
annual Tm model for all seasons, and it is not necessary
to set up local seasonal Tm models for HK sounding
station.

(2) The Bevis model is fit for areas of north-
eastern China and the Qinghai-Tibetan Plateau, but
it produces a large deviation of Tm in southeastern
and northwestern China, where the local Tm-Ts model
should be set up.

(3) The Kriging spatial interpolation method can
be used to set up the local Tm-Ts model for areas with
no historical sounding data such as southeastern and
northwestern China, where the Bevis model performs
not well.

(4) Acquisition of the local Tm based on ERA-
interim reanalysis data coincides well with that based
on the sounding data for Beijing and HK, which might
provide a substitute available data source to set up
local Tm-Ts models for areas lack of sounding data.

For areas lack of historical sounding data, the
Kriging interpolation method and the ECMWF re-
analysis product ERA-interim were both employed to
set up the local Tm-Ts model. The ECMWF reanalysis
product has wide data coverage and long data span
on acceptable grid resolutions, whereas for the Krig-
ing method in Section 5, there are only 120 sounding
stations in China. Future research may focus on the
validation of the ECMWF reanalysis product ERA-

interim in setting up local Tm-Ts models in comparison
with the Kriging method. If the result is encouraging,
the ECMWF reanalysis product can be used to set up
the local Tm-Ts models on the grid scale. Meanwhile,
the Kriging method may also be used to interpolated
the a and b coefficients of the local Tm-Ts models for
more homogeneously and rich distributed grids.

It should be pointed out that because the qual-
ity of the reanalysis product strongly depends on the
quality and richness of the sounding data, for areas
with no or few sounding data, the quality of the re-
analysis product may not be good. It is difficult to say
whether the reanalysis product is fit for Tm calculation
for areas without sounding data. Nevertheless, it will
be the direction of further research about whether the
reanalysis product might serve as an effective and rich
data source for the acquisition and localization of Tm

for areas with no sounding data.
Acknowledgments. The ECMWF ERA-
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