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ABSTRACT

The solutions of downslope moticns over a sloping terrain are solved analytically in terms of the atmos-
pheric wave equations with a two-layer model. The physical meanings of the solutions are discussed. As the
lower layer of the atmosphere is stable and deep with strong wind the solution represents strong downslope
wind, while as the lower layer is strong stable with light wind the drainage flow is obtained. The dependence
of the strength of downslope motion on the atmospheric stratification, wind field structure as well as Scorer
parameter is also examined.
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1. INTRODUCTION

The downslope motion in the present paper metins two kinds of atmospheric circulations.
One is the phenomenon of strong wind and sudden warming in the leeside as the air flows
over plateau, mountain or tableland. This kind of circulation often occurs as wind speed is
strong and terrain is steep. The other phenomenon is the drainage flow, which forms as the
cold air induced by the nocturnal radiative cooling coasts down along a slope. Since it is
related with the surface radiative inversion the drainage often occurs at clear night with weak
wind. Provided the radiative cooling is strong enough the drainage can form even over a slope
with height of only one or two hundred meters.

Some analytical analyses have been made for the two kinds ot downslope motions.
Kiemp and Lilly (1975), for example, used linearized three-layer model to discuss the upstream
atmospheric conditions inducing the strong surface wind in the leeside slope. They argued
that it favours the strong wind in the leeside if the atmosphere in the lower layer is stable and
in the middle troposphere is deep and less stable.

For the drainage flow, Fleagle (1950) attributed the horizontal pressure gradient force to
buoyant force produced by radiative cooling, and obtained the analytical solution of the drai-
nage flow. In his solution, the horizontal velocity is directly proportional to the net radiation
but inversely proportional to the depth of the cooling layer and the slope of the terrain. Since
the formations of all the downslope motions need stable lower layer atmosphere, certain dif-
ference of values of Scorer parameters between higher and lower atmospheres, and correspond-
ing sloping terrain, the two kinds of motions must have similar mathematical expressions
even though they have different mechanisms of generation. In the present paper a two-layer
model is used to solve the atmospheric wave equation analytically. In given atmospheric and
topographic conditions the analytical solutions of the disturbed streamlines are obtained. For
different values of the parameters the solution represents different forms of motions, The
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sohmons are dlscussed in lhe physwa respect and compared w1th olher theoretlcal and obser-

vational results.

II. SOLUTIONS OF THE ATMOSPHERIC WAVE EQUATION

A two-layer model with the interface at z=0 is considered. The depth of the lower layer
of the model is set to be . Then the ground surface 1s at z= — 4. The Brunt-Vaisala frequen-
cies and the mean wind spceds in the lower and higher layers are assumed as N,. N, U,
and U ,, respectivelv. As air flows over the terrain at the bottom boundary of the model the
vertical displacements of the disturbed streamlines are {=z—z,, where z is the heiglht of
the disturbed streamlines and z, is the height of the undisturbed streamlines far upstream. Ac-
cording to the wave theory (Scorer, 1978) ¢ satisfies the wave equation

L, | 9'Ls _
ax +az+lziéigo! (1)
where ;=1,2 represent the lower and higher atmosphere, respectively, and [,=N,/U, 1s

the Scorer parameter.
Expanding ¢ as Fourier components in wavenumber space,

=Ce'*, i=A—1,
and substituting it into Eq. (1}, we obtain the equation of the component # with wavenun:ber
k
s
9C _(k-1')E=0 . (2)
0z
The downslope motions require the condition N,>/N,. Since usually U,>U,, the
condition [,>], is always satisfied.
The solution of &, satisfying Eq. (2) is
&, =Acosv,z+ Bsinvz, (3)
where =1k .
In the upper layer, ¢, consists of the waves with higher and lower wavenumbers, respec-
tively. As p</,
C~'2=Ce""22, (4)

where y,=./[7 —p7. Since the term including e~i”:* represents the waves propagating

downward, it does not have physical meaning and must be omitted (Smith, 1979). As
k>0
&.=Ce™"7, (5)
where u=./p*—[? .
The coefficients 4, B and C in the previous expressions will be determined according
to the interface conditions and the bottom boundary condition.
The first interface condition is that the vertical displaccments of the streamlines at both
sides of the interface are continuous,
élzéz, z2=0. (6)
The second interface condition is determined according to the discontinuity of the density
and the velocity, and the continuity of the pressure at the two sides of the interface. Ac-
cording to Bernoulli theorem along the streamline on the lower side of the interface, we have
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o Ly b
P 2 L1
where the left-hand side represents the undisturbed state, while the right-hand side the disturbed
state. y, and w, are the disturbed velocities. Expanding the right-hand side and omitting
the second order quantities, we have

PD_P1:p1U1l11 ‘1',019411 .
Similarly, on the upper side of the interface, we have

po'—pzzszzuz‘l_ngZg.

_'[-,éf[(Ulﬂ'—u1)2+wf]+9§19

2 2
By using of p,= pyyu=—U g.g, and the approximate relation %(-g%) :(Uz> ’

we obtain the second interface condition,

0L, _ 9 p—p: U, ot =
22U §‘+<U1) Py (7)
or

0Ly _ e 08

2z V52+aaz9 (8)

, . B _ S
where parameters g = (%) and y= Ug? P17 Pz represent the wind shear and density dif-
1 1 P

ference bctween upper and lower layers, respectively.
The topographic profile of the Iceside slope is assumed as a arc tangent function

&y

= — (< by ¥ i
T garctan ( 3 ),
where g and b arc the length scales of height and width of the terrain, respectively. The
Fourier transformation of the expression above in wavenumber space is

oo

After Fourier transformation of Egs. (0), (8) and (9), the interface and bottom boundary
conditions, which & should satisfy, are expressed as

£ =&, z=0 (10)
o8 0L, . _

0. =@ v z=0 | (11)
&= —aie "/k. z2=—h (i2)

Using Eqgs. (10)—(12) to determine the coefficients 4, B and C, we obtain the solution
of & as follows.
As p<l, the solution of &, is

- kb
&= —iaEFP[ (v,cosv h—Ysin v, i) (v,cosviz+Psinv,z) —v'.a’sin vihsin vz
+ivivasinv, (h+2) 71, (13)
where P=[(v,cosv h—Vsinv k) +v’a*sin v h]"".
As k>, the solution is
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s . et oy, cosmz+(?—au) sinv.z
Cin= —1a—F— -

B vicosvih— (Y—au) sinvih

(14)

The disturbances of the streamlines consist of the higher wavenumber components &,
and the lower wavenumber components &,

L= §11+C1h‘ \ l:xie‘khdk‘{“ \ 11;@' “dk . (15)

In the first integral of Eq. (15) the integrand (see Eq. (13)) includes the factor of e v"/4
which decreases rapidly with 2, Then the main contribution of the integral consists of the
lower wavenumber components (at the vicinity of £=0). Similar to the treatment by Scorer
(1978), the integral can be represented as

Ci=—aP*[(licosl h—Psinlih) (I cosliz+Vsinlz) —{*:a°sinl hsinl,z

+il,lasin !, (h+z)]{ zTe'”dk (16)

Taking the rcal parl, we have

C1z~—adrctan?P [licoslih—vsinlih) (Licoghz+ypsinl,z) —[ia’sinlhsinl,z],

(17)
where P*=P|,.,=[,cosl{ h—ysinl,h)*+a*l*;sin*l A]".
The second integral of Eq. (15) has a sigularity at 5= £* as thc denominator of the inte-
grand (see Eq. (14)) is zero,
v, *cosv,*h— (p —au®) sinv,*h=0, (18)
where oy, *= /[t — %t u¥= /R [1 .
According to the residue theorem the integral can be calculated as

él/x:nRi,
where the residuc
e T* [y® cosv, Fzt (p—au®) sinv,Fz]cosy Fx l
R=—ia 7 e (14)
Z[vicosvh—PYsinyhi+uasinv,h]| .
3k k=h
After rearranging we have
=-k%p PoR
e v sin v, *(h+2) cosk*x ,
Ep=aa &p— T wig . (20)

B sin®yh wra—p+p* fz—l—v'u + (P —ut a) h

Substituting Eqgs. (17) and (20) into Eq. (I5), we obtain the solution of the disturbed streamlines
in the lower layer. 1t can be seen from the numerical analyses in the following paragraph that
the value of the higher wavenumber components is much less than that of the lower wavenum-
ber components. Thus the flow disturbances induced by the topography consist mainly of
the components with longer wavelengths. We will discuss this part of the solution in detail.

Substituting the relationship w=U8¢/dx into Eq. (17) obtains the Jower wavenumber
part of the disturbed vertical motion

b

Wy = — U1 . PPl cosl h—psinl k) (licosliz+ysinl,z) —1ia’sinl hsinl,z]. (21)
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Substituting Eq. (21) into 2(U,+u,)/0x+0w,/dz=0, Integrating it with respect
to x and using the condition of 5, =0at x= —cc, we have the lower wavenumber part of
the disturbed horizontal velocity as

ull:Ula(al‘Ctaﬂ% +*§*)P*[ (llcOSllh—’))SjnIlh)
(—{ sinlz+ vl cosl,z) =1}, a*sin | hcos!,2]. (22)
The higher wavenumber part of the disturbed velocities can be deduced from Eq. (20).
Since its value is small, the expression is omitted here.
Similar to the treatment of obtaining Egs. (17), (20) etc., we can obtain the disturbed stream-
lines in the upper layer

E,=C+Cu= —aarctan—gP*[(llcosl,h—?sinllh)llcoslzz—lllza’sinllh sinl,z]

‘ e—la:::[, vl:::h e—u;;::cosk*x
TIG';}Zﬁ * YA T Twmr

siny,*h

- o - - a2 I I , (23)
[$=::a_'})+vl=:<zh+%;a 4+ (v_“f.:a)zh

and the expressions of y,;, wu.:, w,.; and w,, which are all omitted here.

III. DISCUSSION

1. Leeside Strong Wind

In the lower layer the atmosphere is assumed as follows: the depth £=3000 m,
N,=1.5x10"%s"", the wind speed increases linearly with height and its mean value
U,=15m/s, then the Scorer parameter [/, =0.00Im™~!. 1nthe upper layer N,=1.25x10"%s7!,
U,=25m/s, and then /,=0.0005m"'. According to the distributions of the wind speeds and
the potential temperature in the upper and tlhie lower layers the condition of 9=0.00Im™"
can be suggested. Since it is assumed that the wind speed in the lower layer varies con-
tinuously with height, there is no shear in the vicinity of the interface, then g=0. The
parameters of the terrain are assumed to be ¢=300 m and =2000 m, that represent a slop-
ing terrain with height of 1500 m and slope of 11°, The atmospheric conditions described
above are similar to those given by Klemp and Lilly (1975) in their analytical solution of
the strong downslope motion in a mountain leeside.

Substituting the parameters above into the expressions of ¢&,; and {,,, we obtain the
lower wavenumber part of the disturbed strcamlines. The numerical calculation indicates
that the maximum amplitude of the disturbances of lower wavenumbers is of the same order
of the terrain height.

According to Eq . (19) it can be obtained with graphic method that z*=0.000935, » *=
0.000354 and #*=0.00079. Substituting these parameters into Egs. (20) and (23), we have
the solution of higher wavenumber components. Their amplitudes are only about 20 m. Com-
pared with the lower wavenumber components all the contributions by &,;, £,, as well as
Uips Uzpe Wy » Wes Can be omitted.

Fig. 1 shows the calculated wind vectors of 7, and }7,. where 7, =/ (U, +u,)) 4+ w,;
and I7,=/(U,+us;)  +w,: -From this figure it can be seen that the strong momentum at the

higher levels over the upper end of the slope transports downward along the streamlines formed
by the topographic waves. At the middle part of the slope (near x=0), the vertical velocity
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reaches its maximum of about -8.8 m/s. And the downward momentum transport also rea-
ches its maximum. Near the ground surface the disturbed horizontal wind speed at 5 =4000
m gets its maximum of about 20 m/s. Thus in the lower layer of the leeside the resulting ve-
locity 7 can be 25—30 m/s, which is close to the value given by Klemp and Lilly (1975) in
their analytical solution.

Since the streamlines diverge upward and downward at the height of about 2000 m over
the Jeeside slope a weak wind region appears there. Then in the leeside the wind speed decrea-
ses with height. It indicates that the airflow at the lower levels in the leeside cannot gain the
momentum {rom the higher levels by the turbulent gradient transport. The flow at the sur-
face in the leeside can obtain the momentum from the higher levels upstream only by wave tran-
sport.

In the real atmosphere the wind speed at the lower end of the slope will decreases with the
distance becausc of friction dissipation. Brinkmann (1974) analysed the distribution of the
strong surface wind in the leeside of the Rocky Mountains. He concluded that wind maximum
appears at the foot of the mountain, that is equivalent to x=4—6 km in Fig. 1.

Both of observation and theory reveal that the stable lower atmosphere is the necessary
condition for Ieeside strong wind. Fig. 2 shows the variation of the disturbed surface wind,
usp, With [, (thatis, V, or 9g,/0z) at a constant mcan spced of U,=15m/s. It indicates
that the disturbed wind speed increases with the stability.

it scems from Eq. (22) that the disturbed wind speed y,, is proportional to {/,. Since
the mean wind speed U, in the lower layer, however, may induce the decreasc of [, the rela-
tion between y,, and [J, is not monotonous. Fig. 3 gives the relation between 4., and U,
at V,=1.5x10"%"'. It can be seen that the disturbed wind speed reaches its maximum at
U,=12m/s. As the mean wind speed deviates from this value the disturbed wind speed always
decreases.

2. Drainage Flow

The drainage flow occurs at clear night with weak wind when a strong surface inversion is
formed by long wave radiative cooling. The wind is weak in the inversion while a strong wind
region (low level jet) appears above the top of the inversion. It is assumed in the model
that in the inversion the wind speed [/, is uniform with the value of 2 m/s, the depth of inversion
£=300m, N,=0.016s"%, [,=0.008 m~!. In the upper layer the wind is stronger and the
stratification is less stable. For instance, U,=2,8m/s and /,=0.0025 m~!. The parameters
representing the density difference and wind shear between upper and lower layers are p=
0.004 m~! and g=2. The topographic parameters are taken as ¢=100m and #=500m.

Substituting these parameters into Eqs. (17) and (22). we have the disturbed streamlines
¢,, and wind speed y,, as shown in Fig. 4.

The streamlines in this figure also represent the distribution of the potential temperature.
It can be seen that the stable layer over the upper end of the slope is shallow but strong; while
the one over the lower end is deep but weak. This is in agreement with the observational
analysis and numerical simulation (Sang, 1985).

In Fig. 4 the horizontal velocity is maximum near the ground surface. 1f the surface fric-
tion in the real atmosphere is considered, the wind maximum should appear between 10—30m.
The decrease of wind speed with height is caused by the effect of the return flow . As the mean
wind speed is Jow and the return flow is strong, the region with negative horizontal velocity can
be found in the real atmospheric observations. A wind speed jump occurs near the top of
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the inversion to form a region of strong wind, that is the low level jet.

Taking the mean wind speed U, as a constant we can see from Eq. (22) that the strength
of the drainage flow near the surface increases with /. Fig. 5 gives the variation of y,, at
the surface with 90/9z . 1t shows that the speed of the drainage flow increases with
the stability of the lower layer. This agrees with the results by Fleagle (1950), in which down-
slope wind speed is proportional to the net radiation. It is reasonable that at a constant mean
wind speed the stability in the lower layer is positively correlated with the net radiation.

It can be seen from Eq. (21) that the downward motion of the drainage flow is proportional
to the height, a, and decreases with the width, b, of the terrain, that is, the descent speed in-
creases with the slope of the terrain. This seems more reasonable than Fleagle’s solution, in
which the speed of the drainage flow is inversely proportional to the terrain slope.

Obtaining £*=0.0044m"!, »,*=0.0067m"* and p*=0.0036m"! from (18), substituting
these parameters into (20), we have

Lix=14.6sinv,* (h+2) cosk*x,
as well as, ;= —0.2c08v,*(h+z)cosk*x

The value of y,, at the surface z=-} can reach 0.2m/s, which cannot be neglected. 1t
indicates that the drainage flow is different from the strong downslope wind. In the drainage
flow the higher wavenumber component has certain contribution to the disturbed wind speed.
This short wave component presents periodic variation in the leeside downstream with wave-
length of 2x/k*=1430m. In some field observations surge exists in the drainage flow.
Whether this phenomenon is related with the high wavenumber components is to be discussed
in further studies.
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