首页 | 官方网站   微博 | 高级检索  
     


The development of a powerful Mongolian cyclone on 14–15 March 2021: Eddy energy analysis
Affiliation:1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;2. College of Geographical Science Inner Mongolia Normal University, Hohhot, China;3. Inner Mongolia Key Laboratory of Remote Sensing & Geography Information System, Inner Mongolia Normal University, Hohhot, China;4. Information and Research Institute of Meteorology, Hydrology and Environment, National Agency for Meteorology and Environmental Monitoring, Juulchinhy gudamj-5, Ulaanbaatar, Mongolia
Abstract:Intense and extensive dust, caused by a strong Mongolian cyclone, hit Mongolia and northern China on 14–15 March 2021. In this study, the development process of this cyclone is analysed from the perspective of high-frequency eddy energetics. During the low-frequency circulation field of early March of 2021, an amplified polar vortex intruding towards central Asia and a ridge straddling eastern and northeastern Asia worked in concert to comprise a strong baroclinic zone from central Asia to Lake Baikal. Under these favourable conditions, on 13 March, a migratory trough triggered the Mongolian cyclone by crossing over the Sayan Mountains. The downwards transfer of kinetic energy from the eddy at 850 hPa played a key role in the intensification and mature stage of the cyclone. This mechanism was primarily completed by the cold air sinking behind the cold front. The frontal cyclone wave mechanism became crucial once the cyclone started to rapidly develop. The authors emphasize that the anomalously large growth of high-frequency available potential energy, which characterized this super strong cyclone, was obtained by extracting energy first from the time-mean available potential energy and then from the low-frequency available potential energy. The interannual temperature anomaly pattern of “north cold south warm” facilitated the additional time-mean available potential energy, and the temperature anomaly pattern of “northwest cold southeast warm” conditioned the extra low-frequency available potential energy. The analysis results suggest that the interaction between high- and low-frequency waves was also important in the development of the intense cyclone.摘要2021年3月14-15日, 强蒙古气旋引起的大范围强沙尘天气袭击了蒙古国和中国北方地区. 本文从高频涡动能量学的角度分析了这一超强气旋的发展过程. 2021年3月初, 加强的极涡向中亚伸入, 并与横跨东亚和东北亚的一个大型脊协同作用, 由此形成了从中亚到贝加尔湖地区的强大斜压带. 在这一有利的低频环流条件下, 3月13日一个移动性小槽越过萨彦岭后触发了蒙古气旋. 850 hPa涡旋动能的下传在气旋的加强和成熟阶段起到了关键作用. 而这一机制主要由冷锋后侧的冷空气下沉过程完成. 一旦气旋开始快速发展, 锋面气旋波机制就变得至关重要.我们强调, 高频涡动有效位能是首先从时间平均有效势能中提取能量, 然后从低频有效位能中汲取能量而剧烈增长的, 这正是该超强气旋的鲜明特征. “北冷南暖”的近地面温度气候异常型为时间平均有效位能的增多和向高频涡动有效位能的转换提供了条件, 而“西北冷东南暖”的温度异常型则有利于低频有效位能的增加和向高频涡动有效位能的转换. 分析结果表明, 高低频波之间的相互作用对蒙古气旋的增强也很重要.
Keywords:关键词:  蒙古气旋  沙尘天气  动量  有效位能  锋面气旋波
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号