两种北极微型浮游植物的荧光差异性分析*

张 芳¹ 光应芝^{1,2} 张前前² 何剑锋¹

(1. 国家海洋局极地科学重点实验室中国极地研究中心 上海 200136;
2. 中国海洋大学化学化工学院 青岛 266100)

提要 为了利用荧光技术对北极浮游植物的生理生态信息进行系统研究,本文以实验室培养条件 下的两种北冰洋微型浮游植物 ——柔弱伪菱形藻(*Pseudo-nitzschia delicatissima*)和海链藻 (*Thalassiosira* sp.)为研究对象,先采用流式细胞术(Flow Cytometry, FCM)和全荧光光谱法对其活体 中色素的静态荧光进行测量,后利用脉冲调制方法(Pulsed Amplitude Modulation, PAM)对其叶绿素 动态荧光信息进行测定,对两种浮游植物的三类荧光信息进行综合比较分析,结果表明:柔弱伪菱 形藻的丰度、基础荧光(F0)、光合系统II(PSII)光化学的有效量子产量(ΦPSII)及光合电子传递效率 (ETR)分别为 22×10⁵cell/mL、844、0.247 和 42.8,皆高于海链藻的相应值(8×10⁵cell/mL、464、0.185 及 33.0);静态荧光和基础荧光分析表明柔弱伪菱形藻细胞内叶绿素 *a* (chl *a*)含量较高;海链藻细胞 内则具有较高含量的类胡萝卜素,其对光保护机制依赖性较强。本文初步展示了三类荧光分析法在 极地微型浮游植物生理生态研究方面的联合应用。

关键词 北极微藻; 流式细胞术; 荧光光谱; 调制叶绿素荧光仪; 非光化学淬灭 中图分类号 Q-331

微型浮游植物(Nano-phytoplankton)是北冰洋海 域的主要生产者,具有很强的环境变化敏感性,其生 长速率、丰度及色素含量,特别是单个细胞的平均叶 绿素含量等生理状况会随着环境的变化而发生改变, 并能够较为迅速地反映环境因子的变化。这些变化均 可以灵敏地反映在浮游植物的荧光特性上(Yentsch *et al*, 1979, 1985; Rat'kova *et al*, 2002; Hoffmann *et al*, 2006; Zhang *et al*, 2009)。浮游植物群落活体荧光受种 群组成、细胞大小、光合系统状态及水体理化因子(温 度、光照、pH、营养盐等)的共同作用,是细胞内色 素、代谢状态等的综合反映(Babichenko *et al*, 2001; Westberry *et al*, 2003)。另外,活体荧光法具有操作简 便、快速和灵敏度高等优点,被广泛应用用于现场和 实验室培养环境中浮游植物色素相关分析(Kim, 1973; Seppälä *et al*, 1999; Serôdio *et al*, 2005; 苏荣国等, 2007; 王昭玉等, 2008; 任保卫等, 2008; Seppälä, 2009¹⁾)。

流式细胞术(Flow Cytometry, FCM)能够进行浮 游植物细胞计数,并可以获得单个细胞在三个固定 发射波长处相关色素的综合荧光(波段带)信息(Sosik et al, 1989),此类技术主要用于微微型浮游植物 (Pico-phytoplankton)丰度和群落结构分析,并侧重于 丰度检测(焦念志等, 1999;孙书存等, 2000; Jiao et al, 2005)。但利用该技术在北极微藻中开展的研究较少 (Liu et al, 2002),仅有 Olson等(1989)对微型浮游植 物的 FCM 荧光信号特征进行了分析,并借此对不同 浮游植物进行了分类。全荧光光谱法可获得不同光合 色素的精细荧光信息,可用于活体浮游植物的种类 识别及数量测定(Zhang et al, 2006, 2010a, 2010b; Li et al, 2008),可以看作是 FCM 荧光信息的细化。这两

^{*} 国家自然科学基金项目, 41206189, 41076130 号;国家海洋局青年基金项目, 2010116 号; 国家海洋局海洋生态系统与生物 地球化学重点实验室开放研究基金, LMEB200902 号。

通讯作者: 张芳, E-mail: zhangfang@pric.gov.cn

¹⁾ Seppälä J, 2009. Fluorescence Properties of Baltic Sea Phytoplankton. Ph. D. dissertation, Aquatic Sciences, Falcully of Biosciences, University of Helsinki, 12-27

收稿日期: 2012-05-10, 收修改稿日期: 2012-09-08

种静态荧光方法,可对色素进行定性定量分析。

脉冲调制方法 (Pulsed Amplitude Modulation, PAM)能够获得色素荧光受环境影响的瞬时动态变化 信息,可以用于浮游植物叶绿素的动态荧光信息采 集。McMinn 等(2004)和 Ban 等(2006)运用 PAM 方法 比较了北极嗜寒浮游植物与温带藻种间光合作用的 差别,揭示了光合系统的保护机制——叶黄素循环在 不同群落浮游植物中所起的不同作用,表明不同种 群浮游植物对生长光照的适应策略不同。

活体荧光综合分析法是由 Seppälä(2009)¹⁾首次运 用于浮游植物群落检测的研究之中,他在对波罗的 海浮游植物进行叶绿素的快速定性或半定量检测的 同时,对浮游植物群落叶绿素动态荧光数据进行了 测量,并对活体荧光综合分析法在浮游植物群落生 理生态分析中的应用进行了系统评价,认为结合静 态荧光和动态荧光信息,可以更有效地进行浮游植 物监测,但是,直到目前为止,该方法仍处于探索 阶段。

本文综合运用 FCM 和全荧光光谱法获取的静态 荧光信息, 以及 PAM 的动态荧光信息, 首次探讨了 荧光综合分析法在极区浮游植物检测方面的应用, 以期建立一种浮游植物荧光信息分析检测新方法。

1 实验部分

1.1 藻种培养

选取粒径<20 µm 的两种北极海域微藻柔弱伪菱 形藻(Pseudo-nitzschia delicatissima, CCMP1309)和海 链藻(Thalassiosira sp., CCMP1056)进行实验室培养, 藻种均购自美国 CCMP(Bigelow Laboratory for Ocean Sciences),分别采自于北冰洋巴芬湾和挪威海域。培 养体系为经 2.0µm 聚碳酸酯膜(Whatman)过滤和 120℃ 灭菌(Sanyo MLS-3780)20min冷却后的 2L 海水,分别 以 f/2 和 L1 为培养基,在光暗比为 12h:12h,温度(4± 2)℃条件下进行培养,接种初始密度约为 1×10⁵ cell/mL。待生长至平稳期(22d)时,于光亮前取样测 量。实验设 3 个平行培养样,每个平行样 3 次重复取样。 1.2 实验仪器与测量条件

1.2.1 FCM 测量 取培养藻液 2mL, 经 20μm 筛绢 过滤后移入样品管,以流式细胞仪 FACSAria (Becton Dickinson)进行测定。收集 488nm 激发光下获得的前

向角散射(Forward-angle scatter, FSC, 其大小反映细胞对激光束的前向散射特性)和侧向角散射(Sideangle scatter, SSC, 其大小反映细胞对激光束的侧向 散射特性)信息,并分别在(530±15)nm、(585±21)nm 和(695±20)nm 发射波长处收集三个波长的荧光(均为 带通量)信号; 测量前预先调整并固定各信号参数, 使各信号皆处于可测范围之内。

1.2.2 光谱测量 取上述条件下预滤后的藻液 2.5mL, 置于 1cm 石英比色池中,以荧光分光光度计 (Hitachi F-7000)进行光谱测量:设置激发光谱波长范 围为 200—600nm,以 680nm 为发射波长;发射光谱 波长为 200—800nm,以 488nm 为激发波长;激发步 长与发射步长均为 1nm,激发狭缝与发射狭缝均为 5nm,光谱扫描速度为 200nm/s。

1.2.3 PAM 测量 同样取上述预滤藻液 2.5mL, 以调制叶绿素荧光仪 Water-PAM(德国 Walz 公司)进 行测定。叶绿素荧光参数光合系统 II (PS II)的最大光 能转化效率(*Fv/Fm*)、PS II 的实际光能转化效率 (ΦPS II)、光合电子传递效率(ETR)和非光化学淬灭 (NPQ)均可在荧光仪上直接读出;用弱测量光(0.01 μmol/(m²·s))和饱和脉冲(4000μmol/(m²·s),持续时间 为 0.4s)作为激发光分别获得基础荧光 *F*0 及最大荧光 *Fm*,并根据公式(*Fm* –*F*0)/*F*0 计算出 PS II 的潜在活 性 *Fv /F*0。

2 结果与分析

2.1 FCM 分析

表 1 为利用 FCM 测量所得的两种北级微藻的两种散射和三色荧光信息。前向角散射 FSC 与被测细胞大小有关,侧向角散射 SSC 则反映细胞组成的复杂性与密实度,与细胞膜、胞质、核膜的折射率相关。 (695±20)nm、(585±21)nm 和(530±15)nm 处分别收集 到浮游植物活体的红色荧光、橙色荧光和绿色荧光。 红色荧光和橙色荧光分别为叶绿素荧光及藻胆素或 类胡萝卜素荧光(强度相对较弱);仅有少数浮游植物的活体绿色荧光被看做由色素体发出(Cucci *et al*, 1985)。因此,由表 1 数据可知,两种浮游植物的 FSC 值及红色荧光强度均很高,符合真核藻的特征(孙书 存等,2000)。由柔弱伪菱形藻(*Pseudo-nitzschia delicatissima*)相对较小的 FSC 和 SSC 值可知该藻的单细

¹⁾ Seppälä J, 2009. Fluorescence properties of Baltic Sea phytoplankton. Ph. D. dissertation, Biosciences of the University of Helsinki, 12-27

表1 FACSAria 的原始参数值 Tab.1 Original FACSAria parameters

藻名	前向散射	侧向散射	红色荧光/(695±20)nm	橙色荧光/(585±21)nm	绿色荧光 Mean/(530±15)nm		
Pseudo-nitzschia delicatissima	72021	2265	29671	9371	180		
Thalassiosira sp.	136583	4454	2491	14592	292		

胞平均体积较小、且细胞内物理结构较为松散;但其 红色荧光值远强于海链藻(Thalassiosira sp.),即该藻 细胞内的叶绿素 a (chl a)含量相对更高; 但柔弱伪菱 形藻的橙色荧光则相对较弱、表明该浮游植物含有 相对较少量的橙色荧光发生色素体;两种浮游植物 的绿色荧光都较弱(<300),本文暂不作研究。

2.2 光谱分析

两种北极微藻在发射波长为 680nm 的激发光谱 和激发波长为 488nm 处的发射光谱如图 1 所示(此激 发波长与 FCM 一致): 两种藻的光谱形状较为相似, 但柔弱伪菱形藻的光谱峰值高于海链藻、即前者色 素浓度较高(Li et al, 2008)。而显微镜计数结果也表明 柔弱伪菱形藻的藻密度更大(前者为 22×10⁵cell/mL, 后者为 8×10⁵cell/mL)。

两种藻激发光谱的最大激发峰值均在 450nm 之 前出现, 符合硅藻的特征; 且有位于绿光区 460nm 附

荧光强度

近的叶绿素 c (chl c)激发 峰和 500nm 附近的 β-胡萝 卜素的激发峰(卢璐等, 2007), 而无藻胆色素激发 峰(575nm 附近明显特征 峰)。对发射光谱而言、柔 弱伪菱形藻和海链藻的 chl a 的最强发射峰分别在 684nm 和 679nm 处, 且 β-胡萝卜素和 chl c 的发射峰 也同样可见, 但均无藻红 蛋白(phycoerithrin)发射峰 (575nm 峰+620nm 肩峰), 即这两种藻中均不含藻胆 色素。相对而言, 两种藻的 激发光谱具有更多色素荧 光峰、可以更好的明确色 素的种类、并以之对浮游 植物进行分类。

所以,综合精细荧光 光谱分析可发现, FCM 收 集的荧光并不能被硬性的

归属于某种色素。表 2 即为结合光谱判定得到的 FCM 参数所代表的实际色素种类,即:(695±20)nm 和 (585±21)nm 两处峰所代表的色素种类分别为 chl a 和 β-胡萝卜素。因此, 联合表 1 数据可知: 就单个细胞 而言, 柔弱伪菱形藻细胞内 chl a 含量高而 β -胡萝卜 素含量低于海链藻。将 FCM 收集到的单个细胞在 695nm 和 585nm 处的荧光强度与群落细胞丰度相乘 可得 chl a 和 β -胡萝卜素的群落荧光值, 以及两种色 素的特征比值(表 2)。柔弱伪菱形藻两种色素的群落 荧光总值均较高, 而色素荧光特征比值(695/585)却 较低,这恰与荧光光谱分析结果(38.83/62.70)相一 致。这同样可推断出该群落 β -胡萝卜素的相对含量较 低。另外,综合两类静态荧光的分析结果可知两种藻 均属干硅藻。

2.3 光合作用活性分析

运用 Water-PAM 测量所得的两种浮游植物的光

Fig.1 Fluorescence spectra of the two algae species obtained by a fluorometer a. 发射波长为 680nm 的激发光谱; b. 激发波长为 488nm 的发射光谱

合参数见表 3。柔弱伪菱形藻的基础荧光(F0 远大于 海链藻,说明其群落 chl a 含量高于后者,这与静态 荧光分析结果一致。该藻 PS II 光合反应中心的 Fv/Fm 和 Fv/F0 都比海链藻低,但其 ΦPS II 及 ETR 值均较 高。另外,如图 2 所示,随着光化光照射时间的增加, 两类浮游植物的 NPQ 均迅速上升,柔弱伪菱形藻的 NPQ 在达到最大值(1.1)后呈现出缓慢下降趋势,海 链藻 NPQ 则在迅速增加后维持在较高的淬灭水平 (2.7)基本不变,并且前者的 NPQ 整体处在较低的水 平。表明该藻的热耗散能力较强。

表 2 两种浮游植物基于 FCM 的的色素荧光比较 Tab.2 Comparison of pigment fluorescence in FCM from different algae species

藻种	Chl <i>a</i> (695±20)nm/10 ⁵	β-胡萝卜素 (585±21)nm/10 ⁵	特征比值 (695/585)
Pseudo-nitzschia delicatissima	432762	206162	2.10
Thalassiosira sp.	19936	116736	0.17

表 3

两种浮游植物的光合参数

Tab.3 Photosynthetic parameters obtained by the Water-PAM								
藻种	F0	Fv/F0	Fv/Fm	ΦPS II	ETR			
Pseudo-nitzschia delicatissima	844	1.187	0.547	0.247	42.8			
Thalassiosira sp.	464	2.116	0.679	0.185	33.0			
3	_	_ ~ ~~	->>		\$			

Fig.2 Non-photochemical quenching procedure of two algae species

以上结果可在一定程度上反映出同一环境下藻 种不同, PSII反应中心的能量利用特点不同, 光保护 能力不同。相对而言, 柔弱伪菱形藻具有更高的 ΦPSII光量子产量, 和含量较高的 chl a 含量, 在一定 程度上能够更多地促进光合作用的进行, 从而使该 藻具有较高的藻密度。而海链藻则通过 PSII反应中 心的光量子传递作用, 将更多的光能用于光耗散从 而减少了光化学反应的有效光吸收, 使光量子产量 下降,表现为较低的藻密度;类胡萝卜素作为光保护 色素(Kashino *et al*, 2002),在海链藻中含量较高,使 得该藻的光保护机制优于柔弱伪菱形藻。

3 结论

在北极浮游植物群落荧光分类及光合活性检测 中,FCM、全荧光光谱和 PAM 三种荧光分析方法的 综合利用,有助于更全面有效地检测北极海域浮游 植物的生理生态效应,具有方法创新意义。

参考文献

- 王昭玉,王江涛,2008. 叶绿素荧光检测技术在浮游植物营养 盐限制研究中的应用. 海洋科学,32(12):97—101
- 卢璐, 苏荣国, 王修林等, 2007. 基于四阶导数的浮游植物叶 绿素荧光激发光谱特征研究. 光谱学与光谱分析, 27(11): 2307—2312
- 任保卫,赵卫红,王江涛等,2008. 海洋微藻生长过程藻液三 维荧光特征. 光谱学与光谱分析,28(5):1130—1134
- 孙书存, 陆健, 张利华, 2000. 流式细胞仪在微型浮游植物生态学中的应用. 生态学杂志, 19(1): 72—78
- 苏荣国, 胡序朋, 张传松等, 2007. 荧光光谱结合主成分分析 对赤潮藻的识别测定. 环境科学, 28(7): 1529—1533
- 焦念志,杨燕辉,1999. 四类海洋超微型浮游生物的同步监测. 海洋与湖沼,30(5):506—511
- Babichenko S, Leeben A, Poryvkina L et al, 2001. Variability of Chlorella sp. fluoresence in response to different nitrogen conditions. Int J Remote Sens, 22(2—3): 403—414
- Ban A, Aikawa S, Hattori H *et al*, 2006. Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03-04. Polar Biosci, 19: 11–28
- Cucci T L, Shumway S E, Newell R C et al, 1985. Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar Ecol Prog Ser, 24: 201—204
- Hoffmann L J, Peeken I, Lochte K *et al*, 2006. Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol Oceanogr, 51(3): 1217—1229
- Jiao N Z, Yang Y H, Hong N *et al*, 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research, 25(10): 1265–1279
- Kashino Y, Kudoh S, Hayashi Y *et al*, 2002. Strategies of phytoplankton to perform effective photosynthesis in the North Water. Deep-Sea Res II, 49(22–23): 5049–5061
- Kim H H, 1973. New algae mapping technique by the use of an airborne laser fluorosensor. Applied Optics, 12(7): 1454— 1459
- Li H Y, Zhang Q Q, Zhu C J et al, 2008. Assessment of phytoplankton class abundance using *in vivo* synchronous fluo-

rescence spectra. Anal Biochem, 377(1): 40-45

- Liu H, Suzuki K, Minami C *et al*, 2002. Picoplankton community structure in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Mar Ecol Prog Ser, 237: 1–14
- McMinn A, Hegseth E N, 2004. Quantum yield and photosynthetic parameters of marine microalgae from the southern Arctic Ocean, Svalbard. J Mar Biol Ass UK, 84(5): 865– 871
- Olson R J, Zettler E R, Anderson O K, 1989. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry, 10(5): 636–643
- Rat'kova T N, Wassmann P, 2002. Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea. J Mar Syst, 38(1-2): 47-75
- Seppälä J, Balode M, 1999. Spatial distribution of phytoplankton in the Gulf of Riga during spring and summer stage. J Marine Syst, 23(1-3): 51-67
- Serôdio J, Vieira S, Cruz S *et al*, 2005. Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Marine Biology, 146(5): 903—914
- Sosik H M, Chisholm S W, Olson R J, 1989. A chlorophyll fluorescence from single cells: interpretation of flow cytometric

signals. Limnol Oceanogr, 34(8): 1749-1761

- Westberry T K, Siegel D A, 2003. Phytoplankton natural fluorescence variability in the Sargasso Sea. Deep-Sea Res I, 50(3): 417—434
- Yentsch C S, Phinney D A, 1985. Spectral fluorescence: an taxonomic tool for studying the structure of phytoplankton populations. J Plankton Res, 7(5): 617—632
- Yentsch C S, Yentsch C M, 1979. Fluorescence spectral signatures-characterization of phytoplankton populations by the use of excitation and emission-spectra. J Mar Res, 37(3): 471—483
- Zhang F, Su R G, He J F et al, 2010a. Study on fluorometric discrimination of phytoplankton based on time-series vectors of wavelet transform. Spectrochim Acta A, 75(2): 578— 584
- Zhang F, Su R G, Wang X L *et al*, 2010b. Identifying phytoplankton in seawater based on discrete excitation-emission fluorescence spectra. J Phycol, 46(2): 403—411
- Zhang F, Su R, Wang X *et al*, 2009. A fluorometric method for the discrimination of harmful algal bloom species developed by wavelet analysis. J Exp Mar Bio Eco, 368(1): 37–43
- Zhang Q Q, Lei S H, Wang X L *et al*, 2006. Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra. Spectrochim Acta A, 63(2): 361–369

COMPARISON OF *IN VIVO* FLUORESCENCE PROPERTIES BETWEEN TWO ARCTIC MICROALGAL SPECIES

ZHANG Fang¹, GUANG Ying-Zhi^{1,2}, ZHANG Qian-Qian², HE Jian-Feng¹

(1. Polar Research Institute of China, Key Labratory for Polar Science, SOA, Shanghai 200136, China;

2. Ocean University of China, Qingdao 266100, China)

Abstract Phytoplankton fluorescence reflects well phytoplankton biomass, primary production (PP), and physiological status in both laboratory and field. We used three fluorescence methods to analyze two laboratory-cultured Arctic microalgae *Pseudo-nitzschia* cf. *delicatissima* and *Thalassiosira* sp. Flow cytometry and fluorescence spectrometry were used to obtain the *in vivo* multi-wavelength fluorescence of pigments, and pulsed-amplitude-modulation chlorophyll fluorometer were used to detect chlorophyll fluorescence kinetics. The results show that the cell abundance of *P*. cf *delicatissima* (22×10^5 cell/mL) was much higher than that of *Thalassiosira* sp. (8×10^5 cell/mL). The minimum fluorescence yield in dark-adapted state, actual photochemical efficiency of PS II, and electron transport rate in *P. delicatissima* cf. (844, 0.247, 42.8) were greater than those in *Thalassiosira* sp. (464, 0.185, 33.0), respectively. Moreover, as shown in fluorescence from flow cytometry and fluorescence spectrometry, cells of *Thalassiosira* sp. contained higher β -carotene, whereas those of *P*. cf. *delicatissima* contained higher chl *a*, indicating remarkable difference in the dependency on light protection. We believe this study could offer an application by combining the three fluorescence analyses for physioecological study of microalgae.

Key words Arctic microalgae; Flow Cytometer; fluorescence spectrum, PAM chlorophyll fluorometer; non-photochemical quenching