首页 | 官方网站   微博 | 高级检索  
     

ENSO and Indian Ocean dipole mode in three coupled GCMs
作者姓名:YU Yongqiang  LIU Xiying
作者单位:LASG,InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China
基金项目:国家自然科学基金,the National Key Science Project of China under contract
摘    要:The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceanic component model, CPMO, CPM1 and FGCMO, are compared. The only difference between the CPMO and the CPM 1 comes from the coupling scheme at the air-sea interface, e.g., flux anomaly coupling scheme for the former and direct coupling scheme for the latter. The FGCMO is also a directly coupled GCM, but its atmospheric component model is the NCAR CCM3 rather than the NCC T63AGCM as in the other two coupled GCMs CPMO and CPM1. All three coupled models show E1Nifio-like interannual variability in the tropic Pacific, but the FGCMO shows a bit stronger amplitude of E1 Nifio events and both the CPMO and the CPM1 show much weaker amplitude than the observed one. In the meanwhile, the quasi-biennial variability dominates in the FGCMO simulations, and 4 a and longer periods are significant in both the CPMO and CPM 1 models. As the E1 Nifio events simulated by the three coupled GCMs, the simulated Indian Ocean dipole mode events are stronger from the coupled model FGCMO and weaker from both the CPMO and CPM1 models than those from observation.

关 键 词:ENSO  印度洋  对称振子振荡模  海洋成分  耦合模型
收稿时间:2004/1/11 0:00:00
修稿时间:2004/6/20 0:00:00

ENSO and Indian Ocean dipole mode in three coupled GCMs
YU Yongqiang,LIU Xiying.ENSO and Indian Ocean dipole mode in three coupled GCMs[J].Acta Oceanologica Sinica,2004,23(4):581-595.
Authors:YU Yongqiang and LIU Xiying
Affiliation:LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:The simulated ENSO and Indian Ocean dipole (IOD) mode events from three coupled GCMs with the same oceaniccomponent model, CPM0, CPM1 and FGCM0, are compared. The only difference between the CPM0 and theCPM1 comes from the coupling scheme at the airsea interface, e.g., flux anomaly coupling scheme for the former anddirect coupling scheme for the latter. The FGCM0 is also a directly coupled GCM, but its atmospheric componentmodel is the NCAR CCM3 rather than the NCC T63AGCM as in the other two coupled GCMs CPM0 and CPM1.All three coupled models show El Nio-like interannual variability in the tropic Pacific, but the FGCM0 shows a bitstronger amplitude of El Nio events and both the CPM0 and the CPM1 show much weaker amplitude than theobserved one. In the meanwhile, the quasi-biennial variability dominates in the FGCM0 simulations, and 4 a andlonger periods are significant in both the CPM0 and CPM1 models. As the El Nio events simulated by the threecoupled GCMs, the simulated Indian Ocean dipole mode events are stronger from the coupled model FGCM0 andweaker from both the CPM0 and CPM1 models than those from observation.
Keywords:ENSO  Indian Ocean dipole  coupled models  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号