首页 | 官方网站   微博 | 高级检索  
     

近60年来长江河口河势变化及其对水动力和盐水入侵的影响Ⅲ.盐水入侵
引用本文:鲍道阳,朱建荣.近60年来长江河口河势变化及其对水动力和盐水入侵的影响Ⅲ.盐水入侵[J].海洋学报,2017,39(4):1-15.
作者姓名:鲍道阳  朱建荣
作者单位:华东师范大学 河口海岸学国家重点实验室, 上海 200062
基金项目:国家自然科学基金项目(41476077);上海市科委重点项目(14231200402)。
摘    要:本文应用本系列论文Ⅱ中建立的长江河口水动力和盐水入侵三维数值模式,模拟长江河口20世纪50年代、70年代和2012年盐水入侵,定量分析不同年代河势下盐水入侵状况和变化程度及其原因。在北支,不同年代盐水入侵的变化是由分流比和潮差共同作用造成的。50年代北支盐水入侵较强,70年代大幅下降,中上段出现淡水,2012年盐水入侵极为严重,整个北支被高盐水占据,上段出现强烈的盐度锋面。50年代和2012年,北支盐水倒灌南支,大潮期间远大于小潮期间,2012年远强于50年代,70年代没有北支盐水倒灌南支现象。在南支,50年代、70年代南支大部分为盐度都小于0.45的淡水,在2012年大潮期间由于出现了强烈的北支盐水倒灌,南支上段出现盐度大于0.45的盐水。在南北港,在50年代盐水入侵最严重;大潮期间,北港净分流比南港大21.6%,北港盐度小于南港盐度,外海盐水主要通过南港入侵,出现南港盐水倒灌进入北港的现象。至70年代,南支主流转向南港,南港净分流比增大,比北港大10.4%,南港盐度明显小于北港盐度;南北港盐水入侵较弱。在2012年,南支主流再次转向北港,北港分流比比南港大10.4%,南港的盐水入侵再次强于北港。小潮期间,50年代由于南港分流比相比于大潮时更小,南港盐水上溯距离更远,上段盐度比更大;至70年代,北港分流比减少,盐水入侵减弱;至2012年,由于大潮时期北支倒灌的盐水在小潮期间到达北港,北港净盐通量比大潮时期大。由于潮动力减弱,小潮期间各年代垂向盐度分层更明显,盐水入侵变化与大潮期间一致。

关 键 词:长江河口    河势变化    盐水入侵    盐通量    数值模拟
收稿时间:2016/3/4 0:00:00
修稿时间:2016/5/7 0:00:00

The effects of river regime changes in the Changjiang Estuary on hydrodynamics and salinity intrusion in the past 60 years Ⅲ.Saltwater intrusion
Bao Daoyang and Zhu Jianrong.The effects of river regime changes in the Changjiang Estuary on hydrodynamics and salinity intrusion in the past 60 years Ⅲ.Saltwater intrusion[J].Acta Oceanologica Sinica (in Chinese),2017,39(4):1-15.
Authors:Bao Daoyang and Zhu Jianrong
Affiliation:State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Abstract:The 3D numerical model of the Changjiang Estuary built in the series paper Ⅱ was used to simulate the saltwater intrusion in 1950s, 1970s and 2012, and the changes of saltwater intrusion under different river regimes and their reasons were analyzed quantitatively in this paper. In the North Branch, the saltwater intrusion were controlled by the water diversion ratio and tidal range. In 1950s and 2012, saltwater spilled over from the North Branch to the South Branch and the magnitude was greater during spring tide than during neap tide, and was greater in 2012 than in 1950s. This phenomenon didn't appear in 1970s. In 1950s, saltwater intrusion was severe in the North Branch. In 1970s, it decreased greatly, and a large amount of fresh water appeared in the upper and middle reaches. In 2012, the saltwater intrusion was very severe and the whole North Branch was occupied by saltwater, sharp salinity front appeared in the upper reaches. In the South Branch, fresh water occupied the most area in 1950s and 1970s, and in 2012 saltwater with salinity greater than 0.45 appeared in the upper reaches because saltwater spilled over from the North Branch. In the North and South Channel, saltwater intrusion in the 1950s was the most severe. During the spring tide, the net water diversion ratio in the North Channel was higher than that that in the South Channel by 21.6%, which caused the salinity in the North Channel was lower than that in the South Channel, resulting in the saltwater from the open sea intruded mainly through the South Channel, and returned over from the South Channel to the North Channel. In 1970s, the mainstream of the South Branch turned to the South Channel, which caused the net water diversion ratio in the South Channel increased, and became higher than that in the North Channel by 10.4%, causing the salinity in the South Channel was lower than that in the North Channel; the saltwater intrusion was weakest in the South and North Channel. In 2012, the mainstream of the South Branch turned to the North Channel again and the net water diversion ratio in the North Channel was higher than that in the South Channel by 10.4%, resulting in the saltwater intrusion in the South Channel greater than that in the North Channel. Comparing with the situation in 1950s, the saltwater intrusion in 1970s was lower in the North and South Channel. Comparing with the situation in 1970s, the saltwater intrusion in 2012 was lower in the North Channel and was higher in the South Channel. During the neap tide, the net water diversion in the South Channel was lower than that that during the spring tide in 1950s, causing the saltwater intruded more farer and the salinity in the upper reaches was higher; in 1970s, the salinity intrusion in the North Channel decreased because of the reduction of the net water diversion ratio; in 2012, the saltwater that spilled over from the North Branch in the spring tide arrived the North Channel, which caused the salt flux in the neap tide being greater than that in the spring tide. The salinity was more stratified in vertical because of the lower tidal dynamics in the three periods, and the changes of saltwater intrusion was almost same as that during the spring tide.
Keywords:Changjiang Estuary  river regime change  saltwater intrusion  salt flux  numerical simulation
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号