基于图像分割的油膜厚度计算及其光谱相关性分析

王娟^{1,2},单春芝^{1,2},宋文鹏^{1,2},孙乐成^{1,2},刘旭东^{1,2}

(1. 国家海洋局北海环境监测中心 青岛 266033; 2. 国家海洋局海洋溢油鉴别与损害评估技术重点实验室 青岛 266033)

摘要:以渤海原油为油样,利用 ASD 地物光谱仪开展油膜光谱测量,针对油膜光谱实验过程 中油膜厚度难以控制的问题,改进布设油膜的方式,利用定量滴定和图像分割方法完成油膜 厚度计算,并开展油膜光谱特性及其与油膜厚度的相关性分析。研究表明,油膜厚度计算方 法可信度较高,能够较真实地计算出油膜厚度;油膜光谱在 350~900 nm 范围内较为平滑,油 膜厚度及其光谱在可见光波段具有较高的相关性,900 nm 之前具有较好的相关性且为正相 关,在 600~800 nm 之间相关性达到最高,波长在 900 nm 之后油膜厚度与其光谱无明显相关 性;油膜光谱在 761 nm 处有峰值存在,此处可以作为判断油膜存在以及油膜厚度反演的敏感 波段;利用 645 nm 以及 761 nm 波段建立油膜厚度与反射光谱的相关模型,能够清晰地显示 油膜厚度与其光谱在可见光波段具有较强的相关性,分析结果能够为后续遥感方法溢油量反 演提供可信的参考。

关键词:油膜;光谱;相关性;图像分割

中图分类号:P7 文献标志码:A

文章编号:1005-9857(2015)07-0107-04

1 引言

通过分析油膜的地物光谱特征,可以识别、 监测海上溢油的发生、发展状况,甚至可以根据 典型相关谱段与油膜厚度的相关性开展溢油量 反演,国内外已有大量相关研究,Palmer 等^[1]分 析 1993 年 Shetlands 群岛的溢油事件时,指出海 洋中分散原油随浓度不同在 700 nm、740 nm、 800 nm 处反射率也不同,440~900nm 可用来进 行溢油油膜信息提取的有效谱段。Foudan^[2]的 研究表明,扩散开的油膜在 580 nm、700 nm 具有 强的反射峰,600~900 nm 范围光谱反射具有最 大的油膜遥感探测可能性。Valborg^[3]在其博士 论文中分析不同油类、不同厚度的油膜在 400~ 850 nm 光谱通道的表现。赵冬至等^[4]总结了柴 油、润滑油、原油等3种油膜随厚度变化的光谱 特征,指出 736 nm 和 774 nm 对不同的油类具有 相同的吸收特征,揭示了油膜随厚度变化的光谱 特征、油水反差规律及吸收特征参数等。在可见

光波段,随原油油膜厚度的增加,反射率呈现出 下降的趋势。张永宁等[5]分析了海洋溢油波谱 特征,指出 500~580 nm 是不同油膜最高反射率 的所在位置;此外近红外光谱可用来鉴别不同的 溢油种类,提出利用 TM 和 AVHRR 数据监测煤 油、轻柴油、润滑油、重柴油和原油的最佳波段组 合。付玉慧等[6]通过原油、重柴油、轻柴油、润滑 油和煤油溢油波谱特征测试分析,绘制各油种不 同厚度时光谱特征曲线图,筛选出各种油膜不同 厚度时的最佳卫星通道组合与增强处理模式。 陆应诚等[7]结合海面甚薄油膜光谱响应特征分 析,指出海面甚薄油膜存在平行多光束干涉现 象,入射到薄膜内的光由于多次反射和折射导致 了海面可见光/近红外光谱反射率的增加,为海 面甚薄油膜遥感探测提供了理论依据。李颖 等[8] 通过测量海水、碎冰、整冰等不同背景条件 下轻柴油和原油油膜的可见光一近红外光谱反 射率曲线,并与洁净的海水、碎冰和平整冰光谱

^{*} **基金项目:**国家海洋局北海分局科技项目"海面油膜厚度与其光谱特征的相关性分析(2013A01)";海洋工程和海上溢油生态补偿/赔偿关键技术研究示范项目(201105006);国家海洋局海洋公益性行业科研专项经费资助项目"海洋溢油污染风险评估及应急响应 关键技术集成及示范应用"(201205012).

曲线进行比较,得到能有效识别冰区溢油的波段。

由于油膜厚度在实验过程难以精确控制,本 文通过改进实验方法,利用定量滴定和图像分割 的方法,计算实验过程中的油膜厚度,通过油膜 各波段的相关性分析,提取最相关谱段,开展油 膜厚度与其光谱相关模型的研究。

2 油膜实验

2.1 油样数据

通过国家海洋局海洋溢油鉴别与损害评估 技术重点实验室的油指纹库获得原油油样,样品 按照实验室规定利用棕色瓶,封装冷藏保存。样 品为重质油,分析其气相色谱图得知,正构烷烃 已被严重降解。

2.2 实验设备

ASD(350~2 500 nm)光谱仪,笔记本电脑 1 台,1 mL 注射器多支,相机,探头支架,灰板,黑 色棉布,不沾油桶 5 个,水桶 1 个(图 1)。

图 1 油膜光谱采集实验设备

2.3 实验方案

本课题中油膜光谱实验在自然光照条件下 进行,天气要求晴朗无云、无风、干燥,场地要求 开阔、无遮挡物、无强反射体。

针对油膜重复滴入无法扩散的问题,改进实 验方法,每次测量5组厚度油膜,利用注射器控 制每次滴入桶内的油量,保证每次都是一次滴 入,使油膜扩散后能形成较为连续且均匀的油 膜。待静置一段时间后,基本无扩散处于稳定状 态时,每5min同时采集光谱和油膜分布图像,直 至油膜完全处于均匀分布状态。采集完后,清洗 不沾油桶,重复以上步骤,完成不同厚度油膜光 谱数据采集。此实验过程能充分保证油膜的均 匀连续性,且与滴入油量形成一一对应关系,通 过图像处理完成油膜面积及厚度精确计算。

3 油膜厚度计算

为实现油膜实验厚度控制方法的优化,本研 究在控制滴入油量的前提下,利用相机完成现场 油膜扩散状态的记录,同步开展此状态下的光谱 测量。筛选油膜停止扩散,处于稳定状态时的图 像和同步光谱作为均匀厚度的可用实验数据。 根据油膜与水体灰度阈值的不同,利用图像分割 方法,实现油膜面积的相对准确计算,进而可求 算出油膜厚度,根据油膜厚度对应的光谱数据分 析光谱随厚度的变化情况。

以油样 0.1 mL 时测量结果为例,图 2 为相 机原始记录相片,根据多幅照片比对,此时油膜 已静置较长时间,基本不再扩散,处于稳定状态, 油膜分布较为均匀,但并未覆盖整个桶口。

图 2 油膜原始照片

对图像进行预处理得到图 3 所示结果,去除 桶口外其他因素的影响,只留下桶口内图像。

图 3 照片初次处理后结果

油膜直方图分布如图 4 所示,可看出,同口

续表

内灰度分布成像双峰的特点,油膜像元占有较 大比例,故油膜灰度处在后峰值处,前峰值为水 体本底灰度分布区域,设置阈值为130,利用单 阈值分割方法实现油膜提取,得到分割结果见 图 5。

图 4 油膜直方图

图 5 油膜照片分割后结果

由(2)步骤中可以获得油膜与桶口像素的比例关系 k,直桶口直径为 d,根据每次滴入桶内油 滴的体积 v 可以计算出光谱测量是桶内油膜的 厚度 h 为 $S_{\text{M}} = \pi (d/2)^2$; $S_{\text{hig}} = kS_{\text{M}}; h = v/S_{\text{higg}}$

利用以上方法计算 19 次滴入油量所对应的 厚度(如表 1),由于实验用不沾油桶口面积固定, 油膜厚度与滴入油量呈现较强的线性关系,如图 6 所示,分析油量与厚度的相关性可知,其复相关 系数 R²=0.908 7,可以认为利用图像分割的方 法能较真实地计算油膜扩散后的厚度。

表 1	油膜厚度计算结果
-----	----------

序号	桶口像 素/个	油膜像 素/个	分割 阈值	比值	桶口实 际面 积/cm ²	油量/ mL	油膜 厚度/ μm
1	2 182 366	1 903 016	105	0.87	165.13	0.05	3.47
2	2 410 904	2 093 393	115	0.87	165.13	0.10	6.97
3	2 853 216	2 395 140	125	0.84	165.13	0.10	7.21
4	2 669 527	2 156 615	115	0.81	165.13	0.10	7.50

序号	桶口像 素/个	油膜像 素/个	分割 阈值	比值	桶口实 际面 积/cm ²	油量/ mL	油膜 厚度/ μm
5	2 613 518	2 232 843	110	0.85	165.13	0.15	10.63
6	2 878 741	2 392 969	115	0.83	165.13	0.20	14.57
7	2 769 373	2 435 364	115	0.88	165.13	0.25	17.22
8	2 452 864	2 111 803	115	0.86	165.13	0.30	21.10
9	$2\ 744\ 666$	$2\ 120\ 545$	110	0.77	165.13	0.30	23.51
10	2 893 745	$2\ 557\ 544$	110	0.88	165.13	0.35	23.98
11	2 674 653	2 462 406	110	0.92	165.13	0.40	26.31
12	2 735 593	$2\ 511\ 647$	110	0.92	165.13	0.40	26.38
13	2 787 868	2 169 357	115	0.78	165.13	0.35	27.24
14	2 948 635	2 775 818	110	0.94	165.13	0.45	28.95
15	2 985 660	2 555 787	110	0.86	165.13	0.45	31.83
16	$2\ 651\ 431$	2 516 082	110	0.95	165.13	0.55	35.10
17	2 922 661	2 803 759	110	0.96	165.13	0.60	37.88
18	3 069 397	$2\ 163\ 472$	120	0.70	165.13	0.50	42.96
19	2 828 309	1 838 531	105	0.65	165.13	0.50	46.58

图 6 滴入油量与油膜厚度相关性分析

4 油膜厚度与光谱相关性分析

4.1 光谱特征

处理后的油样光谱曲线如图 7 所示,从图中 可看出,油膜光谱在 350~900 nm 范围内较为平 滑,数据质量较好,在 1 000 nm 以后的波长范围 内光谱由于受到大气、水汽等影响,油膜光谱数 据质量较差,在 1 400~1 500 nm 以及 1 800~ 2 000 nm 处受水汽影响,整个光谱出现较大波 动,此处为典型的水汽吸收波段。在可见光波段 内,由于受本底水体光谱的影响,油膜反射率呈 随波长增加逐渐减小趋势。各厚度油膜光谱在 761 nm 处发现有异常峰值存在,实验发现水体光 谱并不存在此突起,表明此处可以作为判断油膜

4.2 相关性分析

图 8 为油膜厚度与各波段光谱之间的相关系数,900 nm 之前具有较好的相关性且为正相关,在600~800 nm 之间相关性达到最高。波长在900 nm 之后油膜厚度与其光谱无明显相关性。

图 8 实验油样各油膜厚度与光谱相关性

选择油样光谱中的红光中心波段 645 nm 处 以及红光与近红外交界处 761 nm 波段完成模型 建立,如图 9 和图 10 所示。利用 2 次、3 次多项式 可以较好地拟合这 2 个波段光谱与油膜厚度的 相互关系,复相关系数 $R^2 = 0.830 \ 2(645 \text{ nm})$ 和 $R^2 = 0.812 \ 1(761 \text{ nm})_{\circ}$

图 9 645 nm 波长光谱与油膜厚度相关性模型

图 10 761 nm 波长光谱与油膜厚度相关性模型

5 结论

改进油膜光谱实验中的布油方式,利用定量 滴定和图像分割的方法,能够有效地解决油膜厚 度难以精确控制的问题,分析可知,其可信度较 高。基于此方法分析实验原油油膜厚度与其光 谱相关性可知,此油样在可见光波段具有较高的 相关性,利用相关性较好的 645 nm 以及 761 nm 波段建立油膜厚度与反射光谱的相关模型,能够 清晰地显示油膜厚度与光谱之间的相互关系,为 后续遥感方法溢油量反演提供可信的参考。

参考文献

- [1] PALMER D, BOASTED G A. BOXALL S R. The second thematic conference on remote sensing for marine and coastal environments:needs solutions and applications[J]. ERIM Conferences, Ann Arbor, 1994:546-558.
- [2] FOUDAN S. The 22nd Asian conference on remote sensing[C]//Singapore. November, 5-9, 2001.
- [3] VALBORG B. Optical remote sensing of oil in the marine environment[D]. Thesis(PhD)University of Southampton(United Kingdom), Source DAI-C 6I/01,2000:153.
- [4] 赵冬至,从丕福.海面溢油的可见光波段地物光谱特征研究[J].遥感技术与应用,2000,15(3):160-164.
- [5] 张永宁,丁倩.油膜波谱特征测试与遥感监测溢油[J].海洋环境科学,2000,19(3):5-10.
- [6] 付玉慧,李栖筠,张宝茹.海洋溢油光谱分析与卫星信息提取[J].遥感学报,12(6):1010-1016.
- [7] 陆应诚,田庆久.海面甚薄油膜光谱响应研究与分析[J].光谱学与光谱分析,2009,29(4):986-989.
- [8] 李颖,刘丙新.有冰海区油膜光谱特征研究[J].光谱学与光谱分析,2010,30(4):1018-1021.