中国南海涠洲油田 W114A 平台服役 15 年的水下钢结构腐蚀 防护调查

姚 平¹, 鲍 祺^{2,3}, 赵 霞², 段继周², 马士德²

(1. 中海石油有限公司 湛江分公司, 广东 湛江 524000; 2. 中国科学院 海洋研究所, 山东 青岛 266071;3. 中国科学院 研究生院, 北京 100049)

摘要:介绍了 W114A 平台在南海服役 15 年的水下钢结构的腐蚀与防护特检报告。检测表明,生物污损严重,最大附着厚度可达 20 cm,阴极保护系统正常,保护效果良好。对检测方法和结果进行了分析发现,电位测量程序不妥,牺牲阳极物理尺寸的测量方法不准确,测厚点的基面清理不干净,不能准确地对平台的阴极防护效果进行评估,并对此提出了修改意见和建议。

关键词:海洋平台;水下钢结构;腐蚀 中图分类号:TE985.6 文献标识码:A

文章编号: 1000-3096(2011)01-0054-05

W114 平台系我国南海投产最早的自产海洋石 油平台, 20世纪90年代初建造, 1993年在南海涠洲 油田投入使用。海洋中钢铁构筑物的钢铁/海水界面 同时存在着两个自然过程,即钢铁的腐蚀过程和污 损生物的附着过程^[1],在这两个过程共同作用下,钢 铁遭到了腐蚀破坏。涠洲油田地处亚热带海域,其所 处的环境和渤海、黄海、东海相比、具有水温高、盐 度高、海水透明度高和生物活性高等特点、由此给该 海域钢铁结构带来严重的生物污损和腐蚀破坏。根 据国际船级社的规定, 平台需每隔 5 年特检 1 次, 2008 年已是该平台的第 3 次特检、即在海水中服役 15年特检(分别于 1999年、2003年对水下钢结构的 腐蚀、污损及阴极保护状态各进行过1次特检)。此 前,我们已经对10年来的污损生物群落对涠洲油田 W114 以及 W12-1 等平台的安全影响进行了研究^[2-4], 本次报告选择了该平台的导管架海平面至泥面范围 内的 8 条桩腿(ROW-A 的 4 条桩腿 A1、A2、A3、 A4 和 ROW-B 的 4 条桩腿 B1、B2、B3、B4), 从超 声测厚、阴极保护电位和牺牲阳极状态三方面结果 对其进行了讨论和评估。

1 水下检

1.1 水下钢桩的阴极保护电位

1.1.1 检测方法

对 W114A 平台桩腿水下结构选取不同深度的 2×7个部位共2×21个采样点(图1),进行结构阴极 电位测量。阴极测量点尽量选择远离牺牲阳极,每 个结构阴极测量部位测3个点,对每个采样阴极3个 点电位分别取平均值,汇总制成图2、图3。测量前 用手锤清理测量点的海生物,确保电位仪与测量部位 良好接触。电位测试采用的是巴氏电位仪。电位仪水 下使用前和试验锌块一起用海水浸泡超过4h,并对电 位仪进行校验,确保水下测量数据的准确性。

1.1.2 检测结果与讨论

从 2008 年阴极保护电位测量数据可以看出(图 3), W114A 平台 8 个桩腿阴极电位数值均在-1050 ~ -1 000 mV 之间,该平台水下钢结构完全处于良好保 护状态。通过测量发现低合金钢在该海域的自腐蚀电 位在-650 mV vs. Ag/AgCl 左右,平台结构钢与低合金 钢基本同类,通常设计保护电位在-800~-1000 mV vs. Ag/AgCl。因此上述测试结果足以说明,该平台水下钢 结构处于良好保护状态,但是,保护电位长期处于 -1000 mV 以上,钢铁表面易产生析氢反应,氢向钢铁 内渗透引起氢腐蚀,给平台造成潜在危险。

该检测结果并未反映水下钢结构真实保护电位 (图4),在海水中浸泡15年之久的平台水下钢结构钢 铁/海水界面的真实情况为在水下钢结构表面还覆盖 着平均20cm厚的污损生物层(图4中阴影部分)。牺 牲阳极的阴极电流 *I*a必须通过污损生物层 *R*b才能到 钢结构基体。

海洋科学 / 2011 年 / 第 35 卷 / 第 1 期

收稿日期: 2010-01-18; 修回日期: 2010-06-20

基金项目:国家科技支撑计划项目(2007BAB27B01)

作者简介:姚平(1965-),男,陕西彬县人,工程师,研究方向:海上石 油平台腐蚀防护, E-mail: yaoping@cnooc.com.cn;马士德,通信作者, E-mail: baoqi08@mails.gucas.ac.cn

研究报告 REPORTS

图 1 W114A 平台阴极保护电位采样点分布图 Fig. 1 Distribution of the sampling sites for the potentials of cathodic protection of W114A offshore platform

Fig. 2 Cathodic potentials of the steel structure at each sampling position detected in 2003

电位仪校验电位变化范围为: -1 012~-1 009 mV, 其中, 深色柱 表示 ROW-A, 浅色柱表示 ROW-B

Calibration potential's range: -1012~-1 009 mV, the dark colar colum represents ROW-A, the shallow colar colum represents ROW-B

Fig. 3 Cathodic potentials of the steel structure at the same sampling positions as that of 2003 detected in 2008
ROW-A 钢桩桩腿电位仪校验电位: -1066 mV; ROW-B 钢桩桩腿

电位仪校验电位: -1047 mV; 其中, 深色柱表示 ROW-A, 浅色柱表示 ROW-B

Calibration potential of ROW-A: -1066 mV; Calibration potential of ROW-B: -1047 mV; the dark colar colum represents ROW-A, the shallow colar colum represents ROW-B

Marine Sciences / Vol. 35, No. 1 / 2011

由牺牲阳极发射出的阴极极化电流实际状态示意图 图 4 (A)及其等效电路图(B)

Fig. 4 Sketch map of the cathodic polarization current emitted from the sacrificial anode (A) and its equivalent circuit (B)

现用检测方法是在除去了污损生物层之后所得 的电位, 消除了生物层 I_aR_b降, 不能反映平台水下钢 结构的真实保护电位、真实保护电位为未除去污损 生物层时所测得电位,所以,真实保护电位=本次所 测电位-I_aR_b。

水下牺牲阳极检测 1.2

1.2.1 检测方法

1.2.1.1 潜水员水下目测

对W114A平台桩腿水下牺牲阳极进行目视检验, 目测项目主要为牺牲阳极块和钢结构的平整情况以 及牺牲阳极的表现状态。目测结果表明、所有牺牲 阳极和平台钢结构焊接良好、牺牲阳极表面基本被 污损生物包覆,从水下照片(图 5)和水下录像发现在 牺牲阳极的表面除了污损生物以外,还有白色生物 物质零散分布于污损生物上。

图 5 水下牺牲阳极 Fig. 5 Underwater sacrificial anodes

1.2.1.2 抽样阳极的物理尺寸测量

在不同位置抽查共 2×12 块抽查牺牲阳极, 对 每一块阳极首先表面全部进行表面海生物、腐蚀物 清除,再用软尺和钢卷尺,测量阳极的长度和3个不 同位置周长值(=两侧边长+上宽长+下宽长),对牺牲 阳极的实际测量物理尺寸数据汇总, 见表 1。发现牺 牲阳极外观尺寸较原始尺寸(图 6)有了一定的缩减。

1.2.2 讨论

原始设计阳极周长为 95.4 cm、根据表 1, 2003 56

图 6 牺牲阳极模型图 Fig. 6 Model diagram of sacrificial anode

年 8 块阳极的外观物理尺寸实际测量结果取平均值 计算为 90.1 cm、占原始周长的 94%、粗略估计阳极 消耗平均速率为 0.5 cm/a, 照此速率计算, 2008 年牺 牲阳极周长应为87.4 cm,但是2008年实际粗略测量 为 90.4 cm, 和 2003 年用同样方法测得的 90.1 cm 相 比较、未能减小反而增加。考虑到在海洋中测量过 程中, 测量人员所采用的测量方法, 如用钢卷尺缠 缚测量周长时,因钢片的弹性在水下很难紧贴带有 四棱角的阳极表面, 而采用皮尺虽能紧贴阳极表面, 但一个潜水员操作很难找到垂直于测点缚线周长, 加之、牺牲阳极表面变得凹凸不平、使得实测周长 大于实际周长。

1.3 水下钢桩超声测厚

1.3.1 实验方法

采用超声测厚仪对W114A平台桩腿海平面至泥 面范围内的 2×4 条桩腿进行结构厚度测量工作、其 中每个桩腿水下部分每隔 5 m 测量一个部位,每个 部位分别在 3:00、 6:00、 9:00 和 12:00 钟点位置测量 4个数值, 取4个钟点位的厚度平均值。测厚仪每次 水下使用前先在水面进行校验、校验数值拍照、确 保水下结构测厚数值的准确性。然后、分别与该位 置原始设计厚度值作差, 见图 7、图 8。测量前用手 锤清理结构杆件表面的海生物,确保测厚仪探头与 被测结构良好接触。

1.3.2 讨论

从图 7、图 8 曲线不难看出, 不同水深 8 个桩腿 采样点的厚度 2008 年数值较 2003 年数值有不同程 度的减小, 这说明从 2003 年到 2008 年这 5 年间导管 架钢桩桩腿仍被缓慢腐蚀着、从测量厚度看、对于 ROW-A 最大腐蚀厚度发生在水下 10 m 处, 为 0.50 mm, 最小腐蚀厚度发生在水下 20 m 处为 0.09 mm, 平均腐蚀厚度为 0.069 mm/a。对于 ROW-B 来说, 腐 蚀速率较 ROW-A 更为均匀, 最大腐蚀厚度发生同样 在水下 10 m 处, 为 0.44 mm, 最小腐蚀厚度发生在

海洋科学 / 2011 年 / 第 35 卷 / 第 1 期

阳极 编号 01	长度(cm)		周长(cm)					
	ROW-A 260	ROW-B 252	ROW-A			ROW-B		
			87	90	89	95	90	83
02	255	257	87	91	87	93	98	97
03	241	252	85	91	93	93	95	95
04	260	251	89	97	90	90	89	92
05	260	258	86	94	97	85	92	90
06	248	257	91	90	89	91	93	90
07	253	256	89	93	93	93	92	93
08	256	252	80	86	89	83	90	89
09	259	257	90	89	91	83	90	87
10	259	254	82	91	88	92	93	95
11	252	252	85	93	98	92	93	93
12	257	255	91	90	94	83	90	88

表 1	牺牲阳极实测物理尺寸
Tab. 1	Actual physical sizes of the sacrificial anode

图 7 ROW-A 实测厚度变化值与深度关系曲线图

水下 35 m 处为 0.13 mm, 平均腐蚀厚度为 0.058 mm/a。综合 2003 年和 2008 年数据,可以看出,水下 部分的腐蚀速率随着水深的不同略有不同,开始随 着深度的增加而逐渐增大达最大值(水下 10 m 处)后, 随着随着深度的继续增加而又开始逐渐减小而后又 增大。低合金钢在海水全浸时自然腐蚀速率为 0.07~0.15 mm/a,在南海腐蚀挂片表明低合金钢在海 水中的腐蚀速率为 0.09~0.14 mm/a^[5],比我国其他海 域腐蚀挂片腐蚀速率低,这是大型钙质为底的污损 生物重叠附着保护作用^[6],而此次 W114 平台水下钢 结构所得的数值同样低于低合金钢在海水全浸时的 自然腐蚀速率,说明牺牲阳极仍起作用,但此次测 试电位值和 2003 年测试值相比所得结果,与钢桩超 声测厚结果相矛盾,说明牺牲阳极物理测量方法应 改进。

2 结论

从 W114A 平台桩腿的水下钢桩的阴极保护电 位、牺牲阳极保护和钢桩超声测厚三方面出发,对 W114A 平台服役 15 年的水下钢结构腐蚀防护情况 进行了分析和初步的讨论:

(1)通过对水下钢桩的阴极保护电位检测,该平 台水下钢结构完全处于良好的保护状态,但该检测 方法并未反应水下钢结构的真实保护电位,测量过 程中不应破坏污损生物层;

(2)通过水下牺牲阳极表面状态目测和物理尺寸 测量,说明牺牲阳极已完全被污损生物包覆,清除 污损生物层后牺牲阳极表面有一层灰白色腐蚀产物, 这是电阻较大的氧化铝,加之污损生物层两者结合 将大大阻碍牺牲阳极的放电,最终导致牺牲阳极的 "污损失效";

(3)超声测厚结果表明,平台水下钢结构仍依平均 0.06 mm/年的腐蚀速率进行。

参考文献:

- [1] 马士德. 金属/海水界面两个主要过程的关系[J]. 海 洋湖沼通报, 1979, 2: 237-241.
- [2] 张良兴,黄宗国,李传燕,等.吕四洋附着生物与钻 孔生物生态研究[J].海洋学报,1981,3(1):139-148.
- [3] 马士德, 段继周, 李伟华, 等. 南海油田. W12-1 平台

水下钢结构腐蚀与防护检测情况讨论[J]. 全面腐蚀 控制, 2006, 20(2): 26-29.

- [4] Ma Shi-de, Li Wei-hua, Yao Ping, et al. The effect of fouling creatures on the security of the offshore oil platform in Weizhou oil field of the South China Sea II The study on the effect of biotic community in W12-1 platform on cathodic protection. MARINE CORROSION AND CONTROL[R]. //3rd International Symposium on Marine Corrosion and Control, 2006.
- [5] 侯保荣. 海洋腐蚀环境理论及其应用[M]. 北京: 科 学出版社, 1999.
- [6] 朱相荣, 王相润. 金属材料的海洋腐蚀与防护[M]. 北京: 国防工业出版社, 1999.

Corrosion and protection of the W114 offshore platform after a 15-year service in Weizhou oil field of the South China

YAO Ping¹, BAO Qi^{2,3}, ZHAO Xia², DUN Ji-zhou², MA Shi-de²

(1. China National Offshore Oil Corporation, Zhanjiang 524000, China; 2. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 3. Graduate School of Chinese Academy of Sciences, Beijing 100049, China)

Received: Jan., 18, 2010

Key words: offshore platform; underwater steel structures; corrosion

Abstract: Corrosion and protection of the underwater steel structures for W114A platform were investigated. The offshore platform has been in service in the South China Sea for 15 years. It was found that the bio-fouling was serious and the maximum attachment thickness was 20cm, while, the cathodic protection system was normal and the protective effect was favorable. After analyzing the detective methods and their results, some problems were found. The program of potential detection was inappropriate, the detection method for physical size of the sacrificial anodes was inaccurate, and the base surface of the thickness measurement points was not clean; therefore, the cathodic protective effect could not be accuraely evaluated. To solve these problems, some valuable suggestions are put forward accordingly.

(本文编辑:康亦兼)