文章编号 10258-7106(2010)02-0317-06

## 内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩 SHRIMP 定年及其意义<sup>\*</sup>

许立权<sup>1</sup> 陈志勇<sup>1</sup> 陈郑辉<sup>2 3</sup> 张  $\mathbb{H}^{1,3}$  张玉清<sup>1</sup>

(1内蒙古自治区地质调查院,内蒙古 呼和浩特 010020;2中国地质科学院矿产资源研究所,北京 100037;3中国地质大学,北京 100083)

摘 要 内蒙古东乌旗朝不楞铁矿床位于二连-东乌旗多金属成矿带的东端。对与朝不楞铁矿床有密切成因联 系的中粗粒花岗岩进行了 SHRIMP 定年,获得了(136.9±1.5) Ma 的精确年龄。该年龄与成矿年龄(140.7±1.8) Ma(Re-Os)在误差范围内相一致,说明成矿作用与成岩作用基本上是同时发生的。对该带区域成矿地质背景进行分 析后认为,该带以燕山期成矿为主。

关键词 地质学 朝不楞矽卡岩型铁矿床 SHRIMP 定年 ;二连-东乌旗多金属成矿带 ;内蒙古 中图分类号 : P618.31 文献标志码 :A

# SHRIMP dating of medium-coarse-grained granite in Chaobuleng iron deposit, Dong Ujimqin Banner, Inner Mongolia

XU LiQuan<sup>1</sup>, CHEN ZhiYong<sup>1</sup>, CHEN ZhengHui<sup>2,3</sup>, ZHANG Tong<sup>1,3</sup> and ZHANG YuQing<sup>1</sup> (1 Inner Mongolia Institute of Geological Survey, Huhbot 010020, Inner Mongolia, China; 2 Institute of Mineral Resources, CAGS, Beijing 100037, China; 3 China University of Geosciences, Beijing 100083, China)

#### Abstract

The Chaobuleng iron deposit is located in the Erlianhaote-Dong Ujimqin Banner polymetallic metallogenic belt of Inner Mongolia. The medium-coarse-grained granite in the area has close genetic relationship with the Chaobuleng skarn iron deposit, and hence was chosen to determine the SHRIMP U-Pb age. The results show that the granite intruded in  $(136.9 \pm 1.5)$  Ma, which is consistent to the mineralization age of  $(140.7 \pm 1.8)$  Ma (Re-Os), suggesting that the mineralization and the rock-forming process occurred at the same time. An analysis of regional metallogenic geological setting shows that mineralization of the metallogenic belt might have occurred in Yanshanian period.

**Key words:** geology, Chaobuleng skarn iron deposit, SHRIMP dating, Erlianhot-Dong Ujimqin Banner polymetallic metalllogenic belt, Inner Mongolia

朝不楞矽卡岩型铁多金属矿床位于内蒙古锡林 木境内,北距中蒙边境 19 km(图1)。经过多年的地 郭勒盟东乌珠穆沁旗(简称东乌旗)满都胡宝拉格苏 质勘查和详细的综合研究,证实其为一处以铁为主,

163. com

<sup>◎</sup> 本文得到内蒙古自治区地质勘查项目"内蒙古重要矿产资源潜力评价及区域成矿规律研究[2007]院士 3-1)"资助

第一作者简介 许立权,男,1971年生,博士,高级工程师,主要从事区域地质调查及矿产资源潜力评价工作。Email:xuliquan2005@



#### 图 1 朝不楞地区区域地质略图(据 1:20 万区域地质图修改●)

D<sub>2</sub>t<sup>1</sup>—中泥盆统塔尔巴格特组1段; D<sub>2</sub>t<sup>2</sup>—中泥盆统塔尔巴格特组2段; J<sub>3</sub>c—上侏罗统查干诺尔组; J<sub>3</sub>b—上侏罗统布拉根哈达组; N<sub>2</sub>— 新近系上新统; Q—第四系;上角图; 1—奥玉陶勒盖大型斑岩型铜金钼矿床; 2—察干苏布加大型斑岩型铜钼矿床; 3—乌日尼图中型钨钼 矿床; 4—乌兰德勒中型斑岩型钼矿床; 5—准苏吉花中型钼矿床; 6—奥尤特火山岩型铜矿床; 7—贺根山岩浆型铬矿床; 8—小坝梁热液 型铜金矿床; 9—沙麦热液型钨矿床; 10—吉林宝力格热液型银矿床; 11—朝不楞砂卡岩型铁多金属矿床; 12—罕达盖林场中-大型砂卡岩 型铁矿床; 13—梨子山砂卡岩型铁矿床; 14—中道山砂卡岩型铁矿床; 15—二连-贺根山蛇绿混杂岩带

Fig. 1 Regional geological sketch map of Chaobuleng area (modified after 1:200 000 Regional Geological Map)  $D_2t^1-1^{st}$  Member of Middle Devonian Taerbagete Formation:  $D_2t^2-2^{nd}$  Member of Middle Devonian Taerbagete Formation:  $J_3c$ —Upper Jurassic Chagannoer Formation:  $J_3b$ —Upper Jurassic Bulagenhada Formation:  $N_2$ —Neogene: Q—Quaternary: 1—Aoyutaolegai large-scale porphyry-type copper-gold-molybdenum deposit: 2—Chagansubujia large-scale porphyry-type copper-molybdenum deposit: 3—Wurinitu middle-scale tungstenmolybdenum deposit: 4—Wulandele middle-scale porphyry-type molybdenum deposit: 5—Zhunsujihua middle-scale molybdenum deposit: 6—Aoyoute volcanics-type copper deposit: 7—Hegenshan magma-type chromium deposit: 8—Xiaobaliang hydrothermal type gold deposit: 9—Shamai hydrothermal type tungsten deposit: 10—Jilinbaolige hydrothermal type silver deposit: 11—Chaobuleng skarn-type iron-polymetallic deposit: 12—Handagailinchang middle-large scale skarn-type iron deposit: 13—Lizishan skarn-type iron deposit: 14—Zhongdaoshan skarn-type iron deposit: 15—Erlian-Hegenshan ophiolite zone

伴生锌、铜、铋、铅、钨、锡、金、银、镓、铟、镉、硫和砷 的多元素矿床,其中,铁、铋、银、锡和铟的储量均已 达到中型规模,其余则为小型。

朝不楞矿床是二连-东乌旗成矿带内一个铁多

金属的典型矿床,自1976年在1:20万区域调查过 程中被发现以来,有诸多生产与科研单位对其成矿 作用、成矿时代等进行过详细研究<sup>❷</sup>(邵和明等, 2002;聂凤军等,2007)。但是,对与成矿密切相关的

<sup>●</sup> 内蒙古区测队. 1978. 额仁高壁幅 1:20 万区域调查报告. 内部资料.

內蒙古 109 地质队. 1982. 朝下楞矿区铁多金属太详查报告. 内部资料.

黑云母花岗岩的成岩年龄却未做过精确的同位素测 年,内蒙古区测队仅依据野外接触关系和区域对比, 将该岩体归为 γ<sup>ζ(2)</sup>。笔者对该黑云母花岗岩进行了 锆石 SHRIMP 年龄测定,为该地区的构造-岩浆演化 及成矿规律研究提供了依据。

## 1 地质概况

朝不楞铁多金属矿床位于西伯利亚板块东南 缘,二连-东乌旗早海西期构造-岩浆岩带的东北端, 属东乌珠穆沁旗复背斜东段的北缘(内蒙古自治区 地质矿产局,1991;李述靖等,1998;聂凤军等, 2007)地处滨太平洋成矿域(叠加在古亚洲成矿域 之上)大兴安岭成矿省东乌旗-嫩江晚古生代—中生 代铁铜钼铅锌金银成矿带内(徐志刚等,2008)。该 成矿带是中国地质调查局 2007年提出的矿产勘查 部署的重要成矿带之一。

朝不楞矿区内出露的地层主要有中-下泥盆统 塔尔巴格特组、中-下侏罗统阿拉坦合力群、上侏罗 统查干诺尔组和布拉根哈达组以及第三系和第四系 (图1)。中-下泥盆统塔尔巴格特组不仅在朝不楞矿 区及其外围分布最广、厚度最大,同时也是最重要的 赋矿围岩,其主要岩石类型有凝灰岩、碳酸盐岩、板 岩、变质粉砂岩、绢云母板岩、砂岩和变质砂砾岩等。 中-下侏罗统阿拉坦合力群主要分布在矿区的西南 部,主要由粉砂岩、砂岩、砂砾岩夹煤线构成;上侏罗 统查干诺尔组和布拉根哈达组主要分布在矿区的东 北部和东南部,主要岩性为流纹岩、流纹质角砾凝灰 岩、晶屑岩屑凝灰岩、流纹斑岩和石英斑岩以及少量 安山岩和玄武岩。第三系和第四系主要是粘土、砾 石、残坡积物和风成砂。

在朝不楞矿区及外围,海西期辉长岩、石英闪长 岩及燕山期黑云母花岗岩分布广泛,其中,燕山期黑 云母花岗岩与铁多金属矿体在时空分布上关系密 切。黑云母花岗岩呈岩株状侵位于中-下泥盆统塔 尔巴格特组碳酸盐岩和粉砂岩中,局部地段形成宽 窄不等的含矿砂卡岩带,岩体长 25 km,宽 2~10 km,出露面积为 90 km<sup>2</sup>,其主体为中粗粒,在与围岩 接触处,发育具细粒结构的边缘相,中粗粒与细粒黑 云母花岗岩为渐变过渡关系。

中粗粒黑云母花岗岩为中粗粒花岗结构,块状 构造,主要由条纹长石、石英、斜长石及少量黑云母 组成,含微量锆石和磷灰石。条纹长石粒径为3~5 细粒黑云母花岗岩呈灰白、灰褐及黄褐色,细粒 花岗结构,块状构造,由石英、钾长石、斜长石及少量 黑云母、榍石、磁铁矿、萤石等组成。一般粒径小于2 mm。石英,呈他形,边缘有溶蚀现象,部分与钾长石 连生,含量50%。钾长石,呈他形-半自形板状,含量 30%,个别可见卡氏双晶,当被绢云母强烈交代时, 仅保留少量残晶。斜长石,含量10%,表面具弱绢云 母化。黑云母呈片状、鳞片状,颗粒细小,含量在 10%左右。多见磁铁矿化、矽卡岩化、钠长石化、萤 石化等。

## 2 SHRIMP 定年

样品 CBL19 采自朝不楞矿区 2 号竖井附近的中 粗粒黑云母花岗岩。样品中的锆石多呈短柱状。阴 极发光图像显示,其大部分锆石都发育有明显的生 长韵律环带,是典型的岩浆结晶锆石(图2)。锆石 SHRIMP U-Pb 分析在北京离子探针中心的 SHRIMP II 上完成。在测试过程中,对锆石样品及 置于同一样品靶上的澳大利亚地质调查局的标准锆 石 TEM(417 Ma)进行了交替测定,每测定 3 个锆石 样品,就测定一次标准锆石 TEM。每次分析记录是 5 次扫描的平均值。应用澳大利亚地质调查局标准 锆石 TEM 进行元素间的分馏校正。Pb/U 校正公 式采用 Pb/U=A(UO/U)2。应用澳大利亚国立大 学 PRAWN 程序进行数据处理(转引自石玉若等, 2005)。测试结果见表 1。

在 15 个测点(见图 2)中,有 14 个点集中分布于 一致曲线上或其附近(图 3),其<sup>206</sup>Pb/<sup>238</sup>U表面年龄 加权平均值为(136.9±1.5)Ma。第 15 个测点给出 的年龄较小,可能反映了后期叠加热事件的影响。

本次 SHRIMP 测定表明,朝不楞矿区内与成矿 关系密切的黑云母花岗岩的就位年龄为(136.9± 1.5) Ma 即成岩时代为早白垩世。聂凤军等(2007) 从该矿区获得的辉钼矿的 Re-Os 等时线年龄为 (140.7±1.8) Ma,推测朝不楞矿床的形成时间为早 白垩世,是燕山期构造-岩浆活动的产物。这2个

| 分析结果      |  |
|-----------|--|
| AIMP U-Pb |  |
| 岩锆石 SHI   |  |
| 云母花岗为     |  |
| 月不楞矿区黑    |  |
| 表1 9      |  |

| district   |
|------------|
| ore        |
| Chaobuleng |
| the        |
| from       |
| granite    |
| 'n.        |
| zircons    |
| of         |
| data       |
| malytical  |
| 306        |
| В          |
| SHRIMP     |
| Table 1    |

| L<br>T                              | 306                              |                     | ,, <u> </u>          | 8007            |             |                     |                  | / V414000/        | $^{207}\text{Pb}^*/^{235}\text{U}$ $^{206}\text{Pb}^*/^{238}$      | <sup>8</sup> U <sup>207</sup> Pb*/ | <sup>206</sup> Pb* |
|-------------------------------------|----------------------------------|---------------------|----------------------|-----------------|-------------|---------------------|------------------|-------------------|--------------------------------------------------------------------|------------------------------------|--------------------|
| ці<br>Ш                             | <sup>∞</sup> Pb <sup>c</sup> / % | U/10-"              | 1h/10 <sup>-</sup> ° |                 | ~_01/ * dl_ | 100 Pb/ 2001 牛酸/ Ma | mPb/2mg 牛酸/Ma    | angpb/ 2001年酸/ Ma | 比值 误差/% 比值 误差                                                      | É/% 比值                             | 误差/%               |
| CBL19-1.1                           | 1.39                             | 147                 | 108                  | 0.76            | 2.71        | $9134.8\pm3.1$      | $135.7 \pm 3.0$  | $135.5 \pm 3.5$   | $0.126 \pm 11  0.02114 \pm 1$                                      | 2.3 0.0472                         | $\pm 4.6$          |
| CBL19-2.1                           | 0.07                             | 3170                | 1110                 | 0.36            | 59.0        | $138.0\pm 2.6$      | $137.9\pm 2.6$   | $137.9 \pm 2.7$   | $0.1462  \pm 2.1  0.02163  \pm$                                    | 1.9  0.04881                       | $\pm 0.88$         |
| CBL19-3.1                           | 0.32                             | 182                 | 178                  | 1.01            | 3.43        | $139.7\pm3.0$       | $139.9 \pm 3.0$  | $139.3 \pm 3.7$   | $\begin{array}{rrrr} 0.1432 & \pm 5.6 & 0.02190 & \pm \end{array}$ | 2.2 0.0448                         | $\pm 4.1$          |
| CBL19-4.1                           | 0.58                             | 272                 | 200                  | 0.76            | 5.00        | $135.9\pm 2.8$      | $136.1 \pm 2.8$  | $136.3 \pm 3.2$   | $0.1395 \pm 5.1 \ 0.02131 \ \pm$                                   | 2.1 0.0496                         | $\pm 3.1$          |
| CBL19-5.1                           | 0.07                             | 1468                | 533                  | 0.38            | 28.1        | $142.1\pm 2.7$      | $142.2\pm 2.7$   | $141.9\pm2.9$     | $0.1487 \pm 2.3 \ 0.02229 \pm$                                     | 1.9 0.04717                        | $\pm 1.4$          |
| CBL19-6.1                           | 0.75                             | 195                 | 143                  | 0.76            | 3.61        | $136.7 \pm 2.9$     | $137.1 \pm 2.9$  | $137.6 \pm 3.3$   | $0.138 \pm 7.3 \ 0.02143 \pm$                                      | 2.2 0.0516                         | $\pm 4.1$          |
| CBL19-7.1                           | 0.16                             | 921                 | 434                  | 0.49            | 17.0        | $136.6\pm2.6$       | $136.7\pm2.6$    | $136.8\pm2.8$     | $0.1422 \pm 2.7 \ 0.02141 \pm$                                     | 1.9 0.04962                        | $\pm 1.6$          |
| CBL19-8.1                           | 0.79                             | 260                 | 164                  | 0.65            | 4.82        | $136.7 \pm 2.9$     | $137.0\pm2.9$    | $137.2\pm3.3$     | $0.1399 \pm 6.5 \ 0.02144 \pm$                                     | 2.2 0.0498                         | $\pm 3.2$          |
| CBL19-9.1                           | 0.21                             | 357                 | 368                  | 1.07            | 6.48        | $134.5\pm2.7$       | $134.5 \pm 2.7$  | $135.1\pm3.3$     | $0.1421  \pm 4.1  0.02109  \pm$                                    | 2.0 0.0525                         | $\pm 2.5$          |
| cbl19-10.1                          | 0.54                             | 483                 | 269                  | 0.57            | 8.81        | $134.7 \pm 2.9$     | $134.5 \pm 3.0$  | $134.3\pm3.3$     | $0.144 \pm 10 \ 0.02111 \pm$                                       | 2.2 0.0469                         | $\pm 8.6$          |
| cbl19-11.1                          | 0.16                             | 2505                | 892                  | 0.37            | 46.7        | $138.2 \pm 2.6$     | $138.3 \pm 2.6$  | $138.6\pm2.8$     | $0.1439  \pm 2.3  0.02166  \pm$                                    | 1.9 0.05085                        | $\pm 0.96$         |
| cb19-12.1                           | 0.09                             | 1721                | 482                  | 0.29            | 31.8        | $137.1 \pm 2.6$     | $137.2 \pm 2.6$  | $137.1\pm2.7$     | $0.1426  \pm 2.5  0.02150  \pm$                                    | 1.9 0.04827                        | $\pm 1.4$          |
| CBL19-13.1                          | 0.08                             | 2302                | 789                  | 0.35            | 42.0        | $135.5 \pm 2.6$     | $135.3 \pm 2.6$  | $136.1\pm2.7$     | $0.1446 \pm 2.2 \ 0.02123 \pm$                                     | 1.9 0.05332                        | $\pm 0.97$         |
| CBL19-14.1                          | 1.31                             | 209                 | 94                   | 0.47            | 3.87        | $135.4~\pm~2.9$     | $136.2 \pm 2.9$  | $136.7\pm3.1$     | $0.130 \pm 9.3 \ 0.02123 \pm$                                      | 2.2 0.0521                         | $\pm 3.4$          |
| CBL19-15.1                          | 0.65                             | 279                 | 293                  | 1.08            | 4.76        | $126.0\pm2.6$       | $0126.3 \pm 2.6$ | $127.4\pm3.2$     | $0.1265 \pm 5.0 \ 0.01974 \pm$                                     | 2.1 0.0555                         | $\pm 2.9$          |
| 注: <sup>206</sup> Pb <sub>6</sub> 指 | 普通铅中的                            | <sup>206</sup> Pb占全 | 铅206Pb 的 E           | <b>百分比: 表</b> 中 | 所有误差为:      | 10,加权平均年龄的误差        | 售为 20° 测试单位:北京   | 离子探针中心。           |                                                                    |                                    |                    |
|                                     |                                  |                     |                      |                 |             |                     | 3.0              |                   |                                                                    |                                    |                    |
|                                     |                                  |                     |                      |                 |             |                     | C                |                   |                                                                    |                                    |                    |
|                                     |                                  |                     |                      |                 |             |                     |                  |                   |                                                                    |                                    |                    |
|                                     |                                  |                     |                      |                 |             |                     | C                |                   |                                                                    |                                    |                    |
|                                     |                                  |                     |                      |                 |             |                     | n                |                   |                                                                    |                                    |                    |
|                                     |                                  |                     |                      |                 |             |                     |                  |                   |                                                                    |                                    |                    |

矿

床



图 2 朝不楞矿区内锆石的测点图 Fig. 2 Images of SHRIMP spots of zircons from the Chaobuleng ore district

年龄值在误差范围内基本一致,因此可以判断,该矿 区的成岩作用与成矿作用是同时发生的。

## 3 讨论

二连-东乌旗成矿带属古亚洲成矿域,其东部被 滨太平洋成矿域叠加。近几年,在该区带及蒙古国 的相连成矿带内,矿产勘查有较大的突破。蒙古国 的奥玉陶勒盖大型斑岩型铜金钼矿床、察干苏布加 大型铜钼矿床等,以及中国阿尔山地区罕达盖林场 中型矽卡岩型铁铜矿床、苏左旗乌兰德勒大型斑岩 型钼矿床、准苏吉花中型钼矿床、乌日尼图中型钨钼 矿床等的相继发现,显示出该区带具有较大的找矿 潜力。

近年来对二连-东乌旗成矿带内矿床成矿年龄 的研究表明,虽然其中有一部分矿床属海西期成矿, 如贺根山铬铁矿床和小坝梁铜金矿床,但更多的矿 床是形成于燕山期。乌兰德勒斑岩型钼矿床位于二 连浩特东北部,其 Re-Os 年龄为(134.1±3.3)Ma (陶继雄等,2009)。大兴安岭西坡朝不楞矽卡岩型 铁多金属矿床的辉钼矿 Re-Os 年龄为(140.7±1.8) Ma( 聂凤军等 2007);本次研究所获得的与成矿关系 密切的黑云母花岗岩的锆石 SHRIMP 年龄为 (136.9±1.5)Ma。此外,该成矿带内的沙麦热液型







钨矿床、奥尤特火山热液型铜矿床、吉林宝力格热液 型银矿床等,也均为燕山期成矿,显示出二连-东乌 旗地区以燕山期为主要成矿期的特点。

### 4 结 论

(1)首次在该地区获得朝不楞黑云母花岗岩的 精确锆石 SHRIMP 年龄为(136.9±1.5) Ma,为该 地区构造-岩浆事件的厘定及成矿规律研究提供了 可靠的同位素年龄资料。

(2)朝不楞黑云母花岗岩与朝不楞砂卡岩型铁 多金属矿床关系密切,考虑到测试的误差范围,该花 岗岩的成岩年龄可达138.4 Ma〔(136.9±1.5) Ma〕朝不楞铁矿床的成矿年龄可达138.9 Ma〔其辉 钼矿 Re-Os年龄为(140.7±1.8) Ma〕,成岩年龄与 成矿年龄基本上是一致的。

(3)通过对二连-东乌旗地区不同类型(矽卡岩型、斑岩型、火山热液型等)不同矿种(铁、钼、铜、钨等)矿床成矿年龄的分析,认为该地区的成矿时代以 燕山期为主,是寻找与中生代构造-岩浆活动有关的 钼、钨、铜、铁多金属矿床的有利地区。

志 谢 野外工作得到陈毓川院士,中国地质 科学院矿产资源研究所毛景文研究员、徐珏研究员、 叶会寿研究员,内蒙古地质矿产勘查局原总工程师 邵和明的指导,一并表示感谢!

#### References

- Inner Mongolia Bureau of Geology and Mineral Resources. 1991. Regional geological summary of Inner Mongolia M J. Huhhot : Inner Mongolia Bureau of Geology and Mineral Resources. 573-594 ( in Chinese ).
- Li S J , Zhang W J , Geng M S and Gao D Z. 1998. Geological features of Mongolia arc structure and its formation and evolution [M]. Beijing : Geol. Pub. House. 104-120 ( in Chinese ).
- Ni F J , Zhang W Y , Du D A , Jing S H and Liu Y. 2007. Re-Os isotopic age dating of molybdenite separates from the Chaobuleng skarn iron-polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia
  [ J ]. Acta Geoscienctica Sinica , 28(4): 315-323 (in Chinese with English abstract ).
- Tao J X , Wang T , Chen Z H , Luo Z Z , Xu L Q , Hao X Y and Cui L W. 2009. The Re-Os isotopic dating of molybdenite from the Wulandele molybdenum-copper-polymetallic deposit in Sonid Zuoqi of Inner Mongolia and its geological significance J J. Rock and Mineral Analysis , 28(3): 249-253 (in Chinese with English abstract ).
- Shao H M and Zhang L Q. 2002. Mainly minerogenetic units and metallogenic series in Inner Mongolia M J. Huhhot : Inner Mongolia Bureau of Geology and Mineral Resources. 50-113 ( in Chinese ).
- Shi Y R , Liu D Y , Zhang Q , Jian P , Zhang F Q , Miao L C , Shi G H , Zhang I, Q and Tao H. 2005. The petrogenesis and SHRIMP dating of the Baiyinbaolidao adakitic rocks in Southern Suzuoqi , Inner Mongolia J ]. Acta Petrologica Sinica , 21(1):143-151( in Chinese with English abstract ).
- Xu Z G , Chen Y C , Wang D H , Chen Z H and Li H M. 2008. The scheme of the classification of the minerogenetic units in China M ]. Beijing : Geol. Pub. House. 45-110 ( in Chinese ).

#### 附中文参考文献

- 内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志[M]. 呼 和浩特:内蒙古地质矿产局. 573-594.
- 李述靖,张维杰,耿明山,高德臻. 1998. 蒙古弧形地质构造特征及形 成演化概论[M]. 北京 地质出版社. 104-120.
- 聂凤军 涨万益 杜道安,江思宏,刘 妍. 2007. 内蒙古朝不楞砂卡 岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义[J]. 地 球学报,28(4)315-323.
- 陶继雄,王 弢,陈郑辉,罗忠泽,许立权,郝先义,崔来旺.2009.内 蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定 年及其地质特征[J].岩矿测试,28(3)249-253.
- 邵和明,张履桥. 2002. 内蒙古自治区主要成矿区带和成矿系列[M]. 呼和浩特:内蒙古地质勘查局. 50-113.
- 石玉若,刘敦一,涨 旗,简 平,张福勤,苗东成,施光海,涨履桥,陶 华. 2005.内蒙古苏左旗白音宝力道 Adakite 质岩类成因探讨 及其 SHRIMP 年代学研究[J].岩石学报,21(1):143-150.
- 徐志刚 陈毓川 王登红 陈郑辉 李厚民. 2008. 中国成矿区带划分 方案 M]. 北京 地质出版社. 45-110.